Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

UFS academic appointed to prestigious academy (ASSAf)
2014-10-07

Another academic of the University of the Free State (UFS), Prof Jeanet Conradie, professor in Chemistry, was invited as newly elected member of the Academy of Science of South Africa (ASSAf).Science and research, by which new concepts are discovered, is her great passion.

Her PhD degree in Chemistry, together with also a strong background in Physics, Computer Science, Mathematics and Applied Mathematics, influenced Prof Conradie’s choice of research interest and expertise to develop gradually in the direction of computational chemistry, which is a beautiful combination of chemistry and physics.

Computational chemistry uses quantum physical principles and mathematical methods to solve chemistry problems via high-performance computerised calculations. Results obtained can be used to predict and understand the behaviour of atoms and molecules in the real world. Chemical reactions and phenomena that are impossible or too dangerous to study experimentally, can also be studied by computational chemistry. Her research team also does experimental laboratory work to combine and compare with the computational analysis. Based on these results, new materials with specific properties are developed.

The Academy of Science of South Africa (ASSAf) aspires to be the apex organisation for science and scholarship in South Africa, recognised and connected both nationally and internationally. Through its membership which represents the collective voice of the most active scholars in all fields of scholarly enquiry, ASSAf aims to generate evidence-based solutions to national problems.

Prof Corli Witthuhn: Vice-Rector: Research at the UFS said: “The UFS is very proud of Prof Conradie, who is also the first female professor in the Department of Chemistry.  Jeanet is a highly productive researcher publishing in high-impact journals.  She has extensive international networks and collaborations, increasing the impact of her work even more.  We are currently awaiting the outcome of her application for NRF rating and believe that she will receive an excellent rating.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept