Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

International Year of Crystallography attracts science experts from across the globe
2014-10-13



Video: Discover what Chrystallopgraphy can do for you
Video: Celebrating Crystallography: An Animated Adventure

Summit programme

The third world summit in the International Year of Crystallography (in Africa) will be hosted by the UFS Department of Chemistry here on the Bloemfontein Campus. Prof André Roodt, Head of the Department of Chemistry, was elected as the President of the European Crystallographic Association in 2012. Earlier this year he unveiled the Max von Laue 'Plaque' in Posnan, Poland.

The Pan-African Meeting of the International Year of Crystallography consists of a congress and summit. The details are as follows:

Congress
12–15 October 2014
CR Swart Senate Hall, UFS Bloemfontein Campus

Summit

15–17 October 2014
CR Swart Senate Hall, UFS Bloemfontein Campus
Summit opening: Wednesday 15 October 2014 at 14:00 in the CR Swart Senate Hall

This event will be opened and attended by:
•    the UFS Rector and Vice-Rector – Profs Jonathan Jansen and Corli Witthuhn;
•    the acting Director-General of the Department of Science and Technology – Dr Thomas Auf der Heyde;
•    the acting CEO of the National Research Foundation – Dr Gansen Pillay;
•    the UNESCO Vice-Director for Science Extension – Dr Jean-Paul Ngome-Abiaga (Paris, France);
•    the representative of the Executive Committee for the International Union of Crystallography (IUCr) – Prof Santiago Garcia-Granda (Oviedo: Spain);
•    the marketing director of the IUCr – Prof Michele Zema (Pavia, Italy);
•    the President of the European Crystallographic Association (ECA) – Prof André Roodt, who will officially open the summit on Wednesday 15 October 2014 from 14:00–15:30.

Presenters from across Africa and Europe will deliver papers at this event which will be attended by more than 100 delegates from twenty-plus countries, including Spain, France, Italy, Croatia, Germany, Russia and India.

Numerous crystallographic research areas will be covered. This includes:
•    powder diffraction,
•    small molecule crystallography,
•    biological crystallography,
•    industrial crystallography,
•    surface crystallography,
as well as techniques such as
•    electron microscopy and
•    synchrotron work.

“At this event we hope to establish an African Crystallographic Association,” said Prof Roodt.

The United Nations declared 2014 as the International Year of Crystallography. It was recently officially opened at the UNESCO headquarters in Paris, France, by the Secretary General of the UN, Ban Ki-moon.

The International Year of Crystallography celebrates the centennial of the work of Max von Laue and the father and son, William Henry and William Laurence Bragg. More generally, it celebrates what crystallography can do for humanity – which proves to be a significant amount.

 

 


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept