Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

Latest information technology employed to make learning in Disaster Management easy
2014-10-20



Prof Dusan Sakulski
Photo: Leonie Bolleurs
Live, colourful, interactive, real-time-calculated. This is how Prof Dusan Sakulski, researcher and lecturer from the UFS’s Disaster Management Training and Education Centre for Africa (DiMTEC), describes his e-learning platform implemented in this department.

Rather than producing research that gathers dust somewhere in a cabinet, Prof Sakulski believes that research should be used to make life easier, not only for society, but also for his students.
 
This educational civil engineer, who is responsible for information technology implementation in disaster risk management, developed through his research several programs to optimise the three contact sessions DiMTEC students have to attend each year.
 
One of the initiatives implemented by Prof Sakulski and his daughter Teodora, was the recording, editing and compiling of theoretical lessons and making it available to students online. “Students then don’t have the excuse of missing a class. Furthermore, it allows them to rather focus on group work during contact sessions and to discuss problems they encountered with the work,” he says.
 
Students also have access to an early-warning system portal for the prediction of hazards, including droughts, floods, rain and temperature. In the disaster-risk environment, this program is very useful, not only for students, but also for practitioners working with this kind of data on a daily basis. The operational and educational application works in real time – with the click of a mouse students and practitioners have access to information on current weather conditions. Indicators for possible natural disasters are also built into this program. Truly a useful application when you are working in the field of disaster risk management.

Difficult and technical data are presented live, with information that is colourful, interactive, real-time-calculated and audible, thanks to embedded mathematical language. In this way, students can learn, memorise and understand their work better.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept