Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

Prof Finkelstein current and only A-rated researcher in Probability and Statistics in SA
2014-10-28



Prof Maxim Finkelstein
Photo: Johan Roux
Prof Maxim Finkelstein from the Department of Mathematical Statistics at the University of the Free State (UFS) received an A-rating from the National Research Foundation (NRF). This makes him the only A-rated researcher in ‘Probability and Statistics’ regarding Mathematical Sciences in the country.

According to the NRF-rating process, a person with an A-rating is a world leader in his field. 

Prof Jonathan Jansen, Vice-Chancellor and Rector, said: "I am absolutely delighted for Professor Finkelstein and for the fact that this is one of the clearest signs that the UFS has significantly increased its standards of research across the institution as a whole."

Prof Finkelstein says this rating means a great deal to him, since it is a reflection of his dedication and perseverance.

“Of course, the rating is not a goal in itself,” Prof Finkelstein says. “The goal is the high quality research and the rating is just an objective indication of this. Along with the satisfaction, this rating brings the responsibility for maintaining this high status in the future.”

Prof Finkelstein conducts his general research in the field of ‘Probability and Statistics’, but his specific area of focus is ‘Stochastic Modelling’. Prof Finkelstein solely lectures postgraduate students and also mentors a few master’s and PhD students. This affords him the time to mainly concentrate on his research.

“Finally, I wish to emphasise the fact that high-quality research became the prime goal at the UFS,” says Prof Finkelstein. He underscores the efforts of the Vice-Chancellor and the Vice-Rector: Research in creating excellent possibilities for researchers. This has already resulted in remarkable improvements in the UFS’s research outputs – and consequently an increase in the number of rated researchers at the university.

A total of 119 UFS researchers currently have evaluation and rating status from the NRF, says Nico Benson, Deputy Director: Research Development. Currently (October 2014) 29 researchers are still waiting for response from the NRF regarding applications submitted. A total of 16 ratings are already known. On the Qwaqwa Campus of the UFS, five researchers are rated.

Prof Finkelstein's A-rating will become effective from 1 January 2015. Ratings are valid for a period of six years and researchers are invited to apply for re-evaluation in the fifth year.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept