Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

SA-YSSP strengthens academic partnerships between countries
2014-11-17

 

Deputy Minister of Science and Technology, Zanele Magwaza-Msibi
Photo: Stephen Collett

Students from all over the world and all walks of life have come together at the Bloemfontein Campus to take part in the Southern African Young Scientists Summer Programme (SA-YSSP) hosted by our university.

This prestigious academic programme is an annual three-month education, academic training and research capacity development programme. The programme is presented in collaboration with the International Institute for Applied Systems Analysis (IIASA) as well as the National Research Foundation.

Dr Priscilla Mensah, Director of the SA-YSSP, says this programme’s Doctoral candidates are given the opportunity to advance their research under the direct supervision of senior scientists from South Africa and IIASA.

“In line with international trends in doctoral education, the SA-YSSP seeks to advance not only the discipline-specific research skills of the young scientists, but also equip and expose scholars to an array of additional competencies and skills required to be successful in knowledge-driven societies,” Dr Mensah says.

During her keynote address, Deputy Minister of Science and Technology, Zanele Magwaza-Msibi, praised the UFS for hosting this successful programme for the third year. “The success of this programme shows in the increase in applicants internationally but specifically in our SADEC regions.”

She said that solutions to the problems in the world require a wide variety of knowledge and integrated approaches to the unique challenges in different countries.

Deputy Minister Magwaza-Msibi also regards the SA-YSSP as a very successful platform to strengthen partnerships with countries.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept