Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

Researchers international leaders in satellite tracking in the wildlife environment
2015-05-29

 

Ground-breaking research has attracted international media attention to Francois Deacon, lecturer and researcher in the Department Animal, Wildlife and Grassland Sciences at the UFS, and Prof Nico Smit, from the same department. They are the first researchers in the world to equip giraffes with GPS collars, and to conduct research on this initiative. Recently, they have been joined by Hennie Butler from the Department of Zoology as well as Free State Nature Conservation to further this research.

“Satellite tracking is proving to be extremely valuable in the wildlife environment. The unit is based on a mobile global two-way communication platform, utilising two-way data satellite communication, complete with GPS systems.

“It allows us to track animals day and night, while we monitor their movements remotely from the computer. These systems make possible the efficient control and monitoring of wildlife in all weather conditions and in near-to-real time. We can even communicate with the animals, calling up their positions or changing the tracking schedules.

“The satellite collar allows us to use the extremely accurate data to conduct research with the best technology available. The volume of data received allows us to publish the data in scientific journals and research-related articles.  

“Scientific institutions and the public sector have both shown great interest in satellite tracking, which opens up new ground for scientific research for this university. Data management can be done, using Africa Wildlife Tracking (AWT) equipment where we can access our data personally, store it, and make visual presentations. The AWT system and software architecture provide the researcher with asset tracking, GPS location reports, geo-fencing, highly-detailed custom mapping, history reports and playback, polling on demand, history plotting on maps, and a range of reporting types and functions,” Francois said.

Data can be analysed to determine home range, dispersal, or habitat preference for any specific species.

Francois has been involved in multiple research projects over the last 12 years on wildlife species and domesticated animals, including the collaring of species such as Black-backed Jackal, Caracal, African Wild Dog, Hyena, Lion, Cheetah, Cattle, Kudu, Giraffe, and Black Rhino: “Giraffe definitely being the most challenging of all,” he said.

In 2010, he started working on his PhD, entitled The spatial ecology, habitat preferences and diet selection of giraffe (Giraffa camelopardalis giraffa) in the Kalahari region of South Africa.

 

Since then, his work has resulted not only in more research work (supervising four Masters students) but also in a number of national and international projects. These include work in the:

  • Kalahari region (e.g. Khamab Nature Reserve and Kgalagadi Transfrontier Park)
  • Kuruman region (Collared 18 cattle to identify spatial patterns in relation to the qualities of vegetation and soil-types available. This project took place in collaboration with Born University in Germany)
  • Woodland Hills Wildlife Estate and Kolomella Iron Ore – ecological monitoring
  • A number of Free State nature reserves (e.g. Distribution of herbivores (kudu and giraffe) and predators (camera traps)

Francois is also involved with species breeding programmes and management (giraffe, buffalo, sable, roan, and rhino) in Korrannaberg, Rustenburg, Hertzogville, Douglas, and Bethlehem as well as animal and ecological monitoring in Kolomella and Beesthoek iron ore.

Besides the collaring of giraffes, Francois and his colleagues are involved in national projects, where they collect milk from lactating giraffes and DNA material, blood samples, and ecto/endo parasites from giraffes in Southern Africa.

With international projects, Francois is working to collect DNA material for the classification of the nine sub-species of giraffe in Africa. He is also involved in projects focusing on the spatial ecology and adaptation of giraffe in Uganda (Murchison Falls), and to save the last 30 giraffe in the DRC- Garamba National Park.

This project has attracted a good deal of international interest. In June 2014, a US film crew (freelancing for Discovery Channel) filmed a documentary on Francois’ research (trailer of documentary). Early in 2015, a second crew, filming for National Geographic, also visited Francois to document his work.

 

More information about Francois’ work is available at the GCF website

Read Francois Deacon's PhD abstract

Direct enquiries to news@ufs.ac.za.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept