Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

Science and goodwill meet drought-stricken communities
2016-03-02

Description: Disinfecting tankered water  Tags: Disinfecting water

“Everyone should contribute to the delivery of clean water to every individual,” says UFS researcher.

The drought in South Africa has impacted the country in many ways. Apart from its economic and environmental implications, the drought also has social implications, leaving some communities without water.

Since 21 January 2016, the Department of Water and Sanitation (DWS) is working together with the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State. Dr Mariana Erasmus, post-doctoral fellow in the department, was appointed to lead a project for disinfecting tankered water supplied by the DWS to communities without water in the Qwaqwa area - which falls under the Maluti-a-Phufung Local Municipality.

She is working on the project with Robbie Erasmus from BioSense Solutions and Martin Bambo from DWS. A total of 53 trucks, 91 tanks, and 420 500 litres of water was disinfected so far, using sodium hypochlorite. “This is standard practice around the world,” Dr Erasmus said.

The work done by the UFS and DWS, who is monitoring the water quality as well as the process of water delivery, is very important. Disinfecting the trucks used to deliver water to drought-stricken communities decreases the formation of biofilm inside the tanks. “The biofilm could contain harmful bacteria such as E-coli. It is important to note that this is mostly the result of secondary pollution, since the water quality from the source where it was taken from, proved to be good. Drinking water with this harmful bacteria that has not been properly managed, can lead to health issues in humans when consumed,” Dr Erasmus said.

The Department of Microbial, Biochemical, and Food Biotechnology, interacting with the DWS on several water-related issues, volunteered to get involved in the project. They strongly believe that everyone should contribute to the delivery of clean water to every individual.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept