Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

Dr Cawood awarded prestigious British Academy Newton Advanced Fellowship
2016-08-02

Description: British Academy logo Tags: British Academy logo
Description: Newton fund logo Tags: Newton fund logo

“I am absolutely thrilled to be associated with such esteemed organisations as the Newton Fund and the British Academy.” This is what Dr Stephanie Cawood, from the Centre for Africa Studies (CAS) at the University of the Free State (UFS), had to say on being awarded a prestigious British Academy Newton Advanced Fellowship. It is part of the United Kingdom’s (UK) Official Development Assistance (ODA).

Grant will assist research on the meaning of museums, monuments, spaces, and discourse

She received a grant of £62,904 (R 1,177,949.35), that will enable her to conduct research that will compare how liberation struggles have been memorialised in South Africa and Uganda. The focus will be on museums, monuments, spaces, and discourse.

The idea is to analyse the relationship between memory, space, and power, said Dr Cawood. The project will run over three years, and will involve comparative fieldwork between liberation movements in South Africa and Uganda.  Dr Johnathan Fisher from the International Development Department at the University of Birmingham will be Dr Cawood’s research partner. “Building a research network between the institutions involved is an important aspect of this research,” said Dr Cawood.

Fellowship will enhance international footprint and collaboration

“I believe it will contribute significantly to my intellectual engagement, career advancement, and international footprint”.

“I believe it will contribute significantly to my
intellectual engagement, career advancement,
and international footprint”

The award also has the potential to further relations at a broader level between the UFS and the University of Birmingham. It will also strengthen a collaborative relationship between the CAS and International Development Department.

The British Academy is the UK’s national body for championing the humanities and social sciences, and counts many world-leading scholars and researchers among its ranks.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept