Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

Second OSM concert inspires Heidedal youth
2016-12-08

Description: OSM Heidedal concert Tags: OSM Heidedal concert 

Sehle Mosole, left, and Jonandrea Pofadder back,
with the children from the ROC Foundation during the
second OSM community outreach in Heidedal, Bloemfontein.
Photo: Supplied

“The project is special because it is an event in the community, by the community.” This is what Gerda Pretorius, lecturer in the Odeion School of Music (OSM) at the University of the Fee State, said about the second music concert hosted by the OSM in Heidedal, Bloemfontein.

The concert, in collaboration with the Reach Our Community (ROC) Foundation on 26 November 2016, was a follow-up on the concept that was started last year. As part of the outcomes of the MUSE3706 module, the third-year Music Education students engage in a project in a specific environment.  For this project the MUSE team, led by Pretorius and Anchen Froneman, collaborated with the ROC Foundation in Heidedal. Two third-year students in the OSM, Sehle Mosole and Jonandrea Pofadder, facilitated the event in 2016.

Long relationship between ROC and UFS

Since 2008, the UFS has successfully partnered with ROC through service-learning and community-engagement projects in which students from across all seven faculties participate. The foundation strives to address the challenges resulting from factors such as poverty, unemployment, HIV/Aids, single parenting, lack of guardianship, and physical and sexual abuse. In the Afterschool Care programme, the children engage in educational, cultural, and recreational activities.

Children who form part of the foundation’s Afterschool Care programme, showed their impressive music skills to their parents and guardians in attendance.

Spontaneous participation by community

“I was deeply touched by the spontaneous participation and appreciation of the community for art-related – in particular music and dance – events,” said Pretorius. A highlight was the community’s involvement in the event and the value it adds to the students’ organising skills.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept