Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

UFS study shows playing time in Super Rugby matches decreasing
2016-12-19

Description: Super Rugby playing time Tags: Super Rugby playing time 

The study by Riaan Schoeman, (left), Prof Robert Schall,
and Prof Derik Coetzee from the University of the Free State
on variables in Super Rugby can provide coaches with
insight on how to approach the game.
Photo: Anja Aucamp

It is better for Super Rugby teams not to have the ball, which also leads to reduced overall playing time in matches.

This observation is from a study by the University of the Free State on the difference between winning and losing teams. Statistics between 2011 and 2015 show that Super Rugby winning teams kick more and their defence is better.

These statistics were applied by Riaan Schoeman, lecturer in Exercise and Sport Sciences, Prof Derik Coetzee, Head of Department: Exercise and Sport Sciences, and Prof Robert Schall, Department of Mathematics and Actuarial Sciences. The purpose of the study, Changes in match variables for winning and losing teams in Super Rugby from 2011 to 2015, was to observe changes. Data on 30 games (four from each team) per season, supplied by the Cheetahs via Verusco TryMaker Pro, were used.

About two minutes less action
“We found that the playing time has decreased. This is the time the ball is in play during 80 minutes,” says Schoeman. In 2011, the average playing time was 34.12 minutes and in 2015 it was 31.95.

“The winning team has less possession of the ball and doesn’t want it. They play more conservatively. They dominate with kicks and then they play,” says Prof Coetzee, who was the conditioning coach for the Springboks in 2007 when they won the World Cup.

Lineouts also more about kicking
As a result, the number of line-outs also increased (from 0.31 per minute in 2011 to 0.34 in 2015) and the winning teams are better in this regard.

“The winning team has less possession of the ball
and doesn’t want it. They play a more conservative
game. They dominate with kicks and then they play.”

Schoeman believes that rule changes could also have contributed to reduced playing time, since something like scrum work nowadays causes more problems. “When a scrum falls, the time thereafter is not playing time.”

According to Prof Coetzee, rucks and mauls have also increased, (rucks from 2.08 per minute in 2011 to 2.16 in 2015 and mauls from 0.07 per minute in 2011 to 0.10 in 2015). “The teams that win, dominate these areas,” he says.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept