Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 January 2024 | Story Leonie Bolleurs | Photo Sonia Small
Prof Corinna Walsh
Prof Corinna Walsh says the PEA POD Infant Body Composition System works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

Nutritional and growth patterns during early life have been associated with health, development, and well-being throughout the life cycle. It is also associated with risks for developing obesity and non-communicable diseases, such as cardiometabolic diseases, later in life. These are the findings of Prof Corinna Walsh, Professor in the Department of Nutrition and Dietetics.

Maternal and child health

”In line with national priorities, a strong research focus area of the Faculty of Health Sciences and the School of Health and Rehabilitation Sciences is maternal and child health,” she says. She goes on to mention that the Department of Nutrition and Dietetics has established a reputable research programme. This programme focuses primarily on the nutritional status of pregnant women and how the early environment to which they are exposed during and after pregnancy affects short- and long-term health outcomes of the offspring.

“In our previous work, the assessment of birth outcomes of infants was, however, limited by the lack of equipment to analyse body composition. The research that we can conduct with the PEA POD® provides us with immense additional potential,” remarks Prof Walsh.

She explains, “The PEA POD Infant Body Composition System is an infant-sized air displacement plethysmography system. It works by directly measuring an infant’s body weight and volume, and then uses these measurements to calculate the body fat percentage, fat mass, and fat-free mass.

According to her, the assessment of body volume takes two minutes. “The PEA POD technique also does not require collection of any fluids and does not expose the infant to radiation. It can be performed as often as required without any risks and be used up to a maximum of 8-10 kg body weight, from birth to about eight months,” she says.

Advanced technology

In the context of research on infant body weight and composition, there is a need for accurate measurement techniques that can differentiate between fat mass and fat-free mass. Prof Walsh is of the opinion that traditional measures such as body mass index (BMI) and weight for length have limitations in this regard, as they do not provide a clear distinction between these components. Furthermore, BMI may not be reliable for assessing adiposity or obesity in paediatric populations, and it can vary significantly with age and gender.

Addressing these challenges, the PEA POD equipment offers advanced technology that allows for highly accurate quantification of infant body composition. This technological capability opens up opportunities to study the effects of early-life nutrition on growth and the developmental mechanisms that may lead to later comorbidities. So, when it comes to researching infant body weight and composition, the PEA POD equipment plays a crucial role in providing precise data and insights.

News Archive

Pianoboost a hit on Google Play Store
2017-03-01

Description: Pianoboost Tags: Pianoboost

Pianoboost is an interactive app developed by
Dr Frelet de Villiers, lecturer in the Odeion School of Music
at the University of the Free State.
Photo: Supplied

“I got the idea after watching my children play Sing Star on PlayStation, where the game can detect how accurately you sing. I realised this could turn my dream into a reality if I looking into the possibility of an app that can do note recognising,” says Dr Frelet de Villiers, developer of the Pianoboost app, about her brainchild.

Dr De Villiers, lecturer in the Odeion School of Music (OSM) at the University of the Free State (UFS), developed this interactive app for piano learners to learn music. She started the developing process three years ago, but the project only got momentum when she  approached LivX, a digital developing company in Pretoria, six months ago.

Useful for other instruments
Pianoboost has been live since 9 February 2017 and already received positive reviews, with a five-star rating on the Google Play Store. “In my experience as piano teacher, I know that learners struggle to learn their notes. They can’t recognise the note on the music sheet and therefore cannot play it on the piano,” says Dr De Villiers. Although this app is developed for piano, it is also successfully used for other instruments like the marimba, violin, and guitar, because it can pick up sounds from almost any instrument.

Ideal for use in academic programme
There are students in the certificate and diploma modules at the OSM who haven’t received any formal music training. Therefore, the app is ideal for them to use. “We have instrument-specific methodology in our degree courses. So, those students could also be exposed to the app for use in their own teaching of young learners,” says Dr De Villiers.

Different features sets app apart
The app, available on Android devices, has instant music recognition and impressive features that already sets it apart from existing learning apps. It is used on a real acoustical piano (you do not need to plug the tablet into a keyboard), has instant note recognition, shows the correct position of the note on the piano when you are wrong, and works like a flash card system, to name a few. “By using the app, you also learn the names of notes whether you played it right or wrong,” says Dr De Villiers.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept