Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 January 2024 | Story Leonie Bolleurs
Scie-Ed building

The university is transforming its campus with state-of-the-art infrastructure development. We are creating spaces that foster learning, empower groundbreaking research, and offer an enriching university experience.

UFS Sasol Library

The UFS has been hard at work to move away from traditional library spaces towards creating tech-enhanced, flexible environments that are dynamic for teaching and learning. According to Jeannet Molopyane, Director of Library and Information Services, they strive to align their spaces with global best practices with the infrastructure changes.

Centre for Mineral Biogeochemistry

The Centre for Mineral Biogeochemistry – completed in February 2023 – integrates seamlessly with its surrounding environment, while also providing a new collaborative workspace for the centre’s personnel. This state-of-the-art facility boasts various laboratories which were mainly funded by the Department of Science and Innovation (DSI). The CMBG includes, among other initiatives, the Mineral Node of the Biogeochemistry Research Infrastructure Platform (BIOGRIP), an initiative of the DSI. This space is situated next to the existing Microbiology Building on the Bloemfontein Campus. 

University Estates Building

For this repair and renovation project, with a construction theme, internal and external materials were selected for their low-maintenance qualities. The first office, located opposite the entrance door, features cladding with exposed galvanised corrugated iron. A new steel mezzanine level was installed and painted in ‘CAT’ yellow and black. All pipes, including plumbing and electrical, are exposed on wall surfaces. The use of internal exposed brickwork, concrete floors, and oriented strand board in ceilings and cupboards further accents this quality in the completed project. 

Animal Research Centre

The Animal Research Centre on the Qwaqwa Campus, replaced the temporary structure that previously served as animal housing. The new structure complies with the requirements and standards for a research facility and caters to the needs of researchers and animals, including small and large rodents. The exterior materials used complement those of the surrounding buildings, providing a low-maintenance profile. The building, accessible to persons with disabilities, contains two research laboratories, an ecotoxicology laboratory, a veterinarian’s office, and a procedure room.

South Campus 24/7 Study Space

The shift to extended programmes and dramatic increase in student enrolment on the South Campus created the need for additional study areas. Considering the steep site outcrop and the existing pedestrian routes from the lower campus, the design explored building blocks that progressively staggered up the hill to accommodate a small amphitheatre study area, maximising seating capacity. This allows the building to accommodate the site’s steepness rather than ignore it. The final design provides study spaces on three levels, all accessible via a ramp, with the main functions situated on the primary level. This design also ensures accessibility for all users, including those with disabilities.

KovsieGear

Incline Architects has designed a new innovative space on the Thakaneng Bridge on the Bloemfontein Campus to accommodate the expansion of the KovsieGear outlet. This new design incorporates extra retail space along with additional room for administration work. The KovsieGear shop now features a new aesthetic, created with natural materials to complement the UFS colours.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept