Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 January 2024 | Story Leonie Bolleurs
Scie-Ed building

The university is transforming its campus with state-of-the-art infrastructure development. We are creating spaces that foster learning, empower groundbreaking research, and offer an enriching university experience.

UFS Sasol Library

The UFS has been hard at work to move away from traditional library spaces towards creating tech-enhanced, flexible environments that are dynamic for teaching and learning. According to Jeannet Molopyane, Director of Library and Information Services, they strive to align their spaces with global best practices with the infrastructure changes.

Centre for Mineral Biogeochemistry

The Centre for Mineral Biogeochemistry – completed in February 2023 – integrates seamlessly with its surrounding environment, while also providing a new collaborative workspace for the centre’s personnel. This state-of-the-art facility boasts various laboratories which were mainly funded by the Department of Science and Innovation (DSI). The CMBG includes, among other initiatives, the Mineral Node of the Biogeochemistry Research Infrastructure Platform (BIOGRIP), an initiative of the DSI. This space is situated next to the existing Microbiology Building on the Bloemfontein Campus. 

University Estates Building

For this repair and renovation project, with a construction theme, internal and external materials were selected for their low-maintenance qualities. The first office, located opposite the entrance door, features cladding with exposed galvanised corrugated iron. A new steel mezzanine level was installed and painted in ‘CAT’ yellow and black. All pipes, including plumbing and electrical, are exposed on wall surfaces. The use of internal exposed brickwork, concrete floors, and oriented strand board in ceilings and cupboards further accents this quality in the completed project. 

Animal Research Centre

The Animal Research Centre on the Qwaqwa Campus, replaced the temporary structure that previously served as animal housing. The new structure complies with the requirements and standards for a research facility and caters to the needs of researchers and animals, including small and large rodents. The exterior materials used complement those of the surrounding buildings, providing a low-maintenance profile. The building, accessible to persons with disabilities, contains two research laboratories, an ecotoxicology laboratory, a veterinarian’s office, and a procedure room.

South Campus 24/7 Study Space

The shift to extended programmes and dramatic increase in student enrolment on the South Campus created the need for additional study areas. Considering the steep site outcrop and the existing pedestrian routes from the lower campus, the design explored building blocks that progressively staggered up the hill to accommodate a small amphitheatre study area, maximising seating capacity. This allows the building to accommodate the site’s steepness rather than ignore it. The final design provides study spaces on three levels, all accessible via a ramp, with the main functions situated on the primary level. This design also ensures accessibility for all users, including those with disabilities.

KovsieGear

Incline Architects has designed a new innovative space on the Thakaneng Bridge on the Bloemfontein Campus to accommodate the expansion of the KovsieGear outlet. This new design incorporates extra retail space along with additional room for administration work. The KovsieGear shop now features a new aesthetic, created with natural materials to complement the UFS colours.

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept