Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 January 2024 | Story Leonie Bolleurs
Scie-Ed building

The university is transforming its campus with state-of-the-art infrastructure development. We are creating spaces that foster learning, empower groundbreaking research, and offer an enriching university experience.

UFS Sasol Library

The UFS has been hard at work to move away from traditional library spaces towards creating tech-enhanced, flexible environments that are dynamic for teaching and learning. According to Jeannet Molopyane, Director of Library and Information Services, they strive to align their spaces with global best practices with the infrastructure changes.

Centre for Mineral Biogeochemistry

The Centre for Mineral Biogeochemistry – completed in February 2023 – integrates seamlessly with its surrounding environment, while also providing a new collaborative workspace for the centre’s personnel. This state-of-the-art facility boasts various laboratories which were mainly funded by the Department of Science and Innovation (DSI). The CMBG includes, among other initiatives, the Mineral Node of the Biogeochemistry Research Infrastructure Platform (BIOGRIP), an initiative of the DSI. This space is situated next to the existing Microbiology Building on the Bloemfontein Campus. 

University Estates Building

For this repair and renovation project, with a construction theme, internal and external materials were selected for their low-maintenance qualities. The first office, located opposite the entrance door, features cladding with exposed galvanised corrugated iron. A new steel mezzanine level was installed and painted in ‘CAT’ yellow and black. All pipes, including plumbing and electrical, are exposed on wall surfaces. The use of internal exposed brickwork, concrete floors, and oriented strand board in ceilings and cupboards further accents this quality in the completed project. 

Animal Research Centre

The Animal Research Centre on the Qwaqwa Campus, replaced the temporary structure that previously served as animal housing. The new structure complies with the requirements and standards for a research facility and caters to the needs of researchers and animals, including small and large rodents. The exterior materials used complement those of the surrounding buildings, providing a low-maintenance profile. The building, accessible to persons with disabilities, contains two research laboratories, an ecotoxicology laboratory, a veterinarian’s office, and a procedure room.

South Campus 24/7 Study Space

The shift to extended programmes and dramatic increase in student enrolment on the South Campus created the need for additional study areas. Considering the steep site outcrop and the existing pedestrian routes from the lower campus, the design explored building blocks that progressively staggered up the hill to accommodate a small amphitheatre study area, maximising seating capacity. This allows the building to accommodate the site’s steepness rather than ignore it. The final design provides study spaces on three levels, all accessible via a ramp, with the main functions situated on the primary level. This design also ensures accessibility for all users, including those with disabilities.

KovsieGear

Incline Architects has designed a new innovative space on the Thakaneng Bridge on the Bloemfontein Campus to accommodate the expansion of the KovsieGear outlet. This new design incorporates extra retail space along with additional room for administration work. The KovsieGear shop now features a new aesthetic, created with natural materials to complement the UFS colours.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept