Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 January 2024 | Story Leonie Bolleurs | Photo Born2shoot
Dr Tommie van Zyl, Prof Philippe Burger and Prof Francis Petersen
At the launch of NovaLogix, a company co-owned by the UFS and ZZ2, were, from the left, Dr Tommie van Zyl, CEO of the ZZ2 Group, and Prof Philippe Burger, Dean of the Faculty of Economic and Management Sciences, and Prof Francis Petersen, Vice-Chancellor and Principal.

The University of the Free State (UFS) recently (17 January 2024) launched NovaLogix in collaboration with ZZ2, a well-known South African fresh produce company.

This new company, co-owned by the university and ZZ2, aims to develop and produce a probiotic used in the production of fresh produce to enhance plant health and growth. Projects include a focus on improved production techniques, product registration, commercialisation, and improved recipes.

Members of the university’s management structures were present at the formal launch of NovaLogix – which took place on the UFS Bloemfontein Campus – including the Vice-Chancellor and Principal, Prof Francis Petersen; the Deputy Vice-Chancellor: Research and Internationalisation, Prof Vasu Reddy; and the Senior Director of the Directorate Research Development, Dr Glen Taylor. The deans of the two faculties that will be mainly involved in this partnership were also present, namely Prof Paul Oberholster, the Dean of the Faculty of Natural and Agricultural Sciences, and Prof Philippe Burger, the Dean of the Faculty of Economic and Management Sciences.

Among the attendees representing ZZ2 were Dr Tommie van Zyl, the Chief Executive Officer of the ZZ2 Group, Piet Prinsloo, Executive Manager at ZZ2, as well as Wiam Haddad, the new CEO of NovaLogix.

Co-creation and more sustainable outcomes

In his welcoming remarks, Prof Petersen stated that this event marks the culmination of a five-year journey that began in 2019 when he, Prof Burger, and Prof Danie Vermeulen, former Dean of the Faculty of Natural and Agricultural Sciences, first visited ZZ2 to initiate closer collaboration and cooperation.

He is of the opinion that the relationship with ZZ2 is ideally suited to assist the university in realising the core values of Vision 130, the university’s strategic intent to reposition the institution as one of the leading universities in South Africa by 2034.

The knowledge, experience, and expertise that ZZ2 brings to the partnership, complement the exciting and impactful research done by the university’s academics across a range of disciplines. - Prof Francis Petersen

Prof Petersen said that the UFS values partnerships with the private sector, and he considers ZZ2 to be a knowledge partner with co-creation as a key component in this collaboration.

“Working together on a challenge makes the solution more sustainable. I believe that innovation and this co-creation approach will generate outcomes that transform the agricultural sector and impart knowledge to the next generation,” he stated.

“The knowledge, experience, and expertise that ZZ2 brings to the partnership complement the exciting and impactful research conducted by the university’s academics across a range of disciplines. I am looking forward to a partnership that will grow from strength to strength,” concluded Prof Petersen.

Breakthrough developments in the pipeline

According to Dr Van Zyl, ZZ2 would like to continue building a future with the university based on a symbiotic relationship. “We want to ensure that our strengths as an organisation are put to good use,” he said, expressing a strong conviction that there will be breakthrough developments with this initiative.

This work will align with ZZ2’s ‘Work with nature’ journey that began more than two decades ago, steering away from conventional, industrial agriculture towards a system that aims to farm in harmony with nature. “It is important that we nurture nature while using her resources,” he said.

He is excited to work with the university, exploring improved techniques and technologies to find more effective ways towards a sustainable future. “Knowledge partners are important in this journey,” he stated.

Building on existing collaborations

In September 2022, the university entered into a collaboration agreement with ZZ2. The partnership between the two entities included the establishment of FreeFarm Innovation, a company that in turn has a holding in NovaLogix and is designed to leverage the strengths, capabilities, skills, and resources of both parties. Part of the operations of FreeFarm Innovation included opportunities for research, commercialisation, and the enhancement of agricultural products. This has come into effect in projects on, for example, business operations, agricultural sustainability, and innovative approaches to growing fruit and vegetables, to name but a few.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept