Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 January 2024 | Story Leonie Bolleurs | Photo Born2shoot
Dr Tommie van Zyl, Prof Philippe Burger and Prof Francis Petersen
At the launch of NovaLogix, a company co-owned by the UFS and ZZ2, were, from the left, Dr Tommie van Zyl, CEO of the ZZ2 Group, and Prof Philippe Burger, Dean of the Faculty of Economic and Management Sciences, and Prof Francis Petersen, Vice-Chancellor and Principal.

The University of the Free State (UFS) recently (17 January 2024) launched NovaLogix in collaboration with ZZ2, a well-known South African fresh produce company.

This new company, co-owned by the university and ZZ2, aims to develop and produce a probiotic used in the production of fresh produce to enhance plant health and growth. Projects include a focus on improved production techniques, product registration, commercialisation, and improved recipes.

Members of the university’s management structures were present at the formal launch of NovaLogix – which took place on the UFS Bloemfontein Campus – including the Vice-Chancellor and Principal, Prof Francis Petersen; the Deputy Vice-Chancellor: Research and Internationalisation, Prof Vasu Reddy; and the Senior Director of the Directorate Research Development, Dr Glen Taylor. The deans of the two faculties that will be mainly involved in this partnership were also present, namely Prof Paul Oberholster, the Dean of the Faculty of Natural and Agricultural Sciences, and Prof Philippe Burger, the Dean of the Faculty of Economic and Management Sciences.

Among the attendees representing ZZ2 were Dr Tommie van Zyl, the Chief Executive Officer of the ZZ2 Group, Piet Prinsloo, Executive Manager at ZZ2, as well as Wiam Haddad, the new CEO of NovaLogix.

Co-creation and more sustainable outcomes

In his welcoming remarks, Prof Petersen stated that this event marks the culmination of a five-year journey that began in 2019 when he, Prof Burger, and Prof Danie Vermeulen, former Dean of the Faculty of Natural and Agricultural Sciences, first visited ZZ2 to initiate closer collaboration and cooperation.

He is of the opinion that the relationship with ZZ2 is ideally suited to assist the university in realising the core values of Vision 130, the university’s strategic intent to reposition the institution as one of the leading universities in South Africa by 2034.

The knowledge, experience, and expertise that ZZ2 brings to the partnership, complement the exciting and impactful research done by the university’s academics across a range of disciplines. - Prof Francis Petersen

Prof Petersen said that the UFS values partnerships with the private sector, and he considers ZZ2 to be a knowledge partner with co-creation as a key component in this collaboration.

“Working together on a challenge makes the solution more sustainable. I believe that innovation and this co-creation approach will generate outcomes that transform the agricultural sector and impart knowledge to the next generation,” he stated.

“The knowledge, experience, and expertise that ZZ2 brings to the partnership complement the exciting and impactful research conducted by the university’s academics across a range of disciplines. I am looking forward to a partnership that will grow from strength to strength,” concluded Prof Petersen.

Breakthrough developments in the pipeline

According to Dr Van Zyl, ZZ2 would like to continue building a future with the university based on a symbiotic relationship. “We want to ensure that our strengths as an organisation are put to good use,” he said, expressing a strong conviction that there will be breakthrough developments with this initiative.

This work will align with ZZ2’s ‘Work with nature’ journey that began more than two decades ago, steering away from conventional, industrial agriculture towards a system that aims to farm in harmony with nature. “It is important that we nurture nature while using her resources,” he said.

He is excited to work with the university, exploring improved techniques and technologies to find more effective ways towards a sustainable future. “Knowledge partners are important in this journey,” he stated.

Building on existing collaborations

In September 2022, the university entered into a collaboration agreement with ZZ2. The partnership between the two entities included the establishment of FreeFarm Innovation, a company that in turn has a holding in NovaLogix and is designed to leverage the strengths, capabilities, skills, and resources of both parties. Part of the operations of FreeFarm Innovation included opportunities for research, commercialisation, and the enhancement of agricultural products. This has come into effect in projects on, for example, business operations, agricultural sustainability, and innovative approaches to growing fruit and vegetables, to name but a few.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept