Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 January 2024 | Story Leonie Bolleurs | Photo Born2shoot
Dr Tommie van Zyl, Prof Philippe Burger and Prof Francis Petersen
At the launch of NovaLogix, a company co-owned by the UFS and ZZ2, were, from the left, Dr Tommie van Zyl, CEO of the ZZ2 Group, and Prof Philippe Burger, Dean of the Faculty of Economic and Management Sciences, and Prof Francis Petersen, Vice-Chancellor and Principal.

The University of the Free State (UFS) recently (17 January 2024) launched NovaLogix in collaboration with ZZ2, a well-known South African fresh produce company.

This new company, co-owned by the university and ZZ2, aims to develop and produce a probiotic used in the production of fresh produce to enhance plant health and growth. Projects include a focus on improved production techniques, product registration, commercialisation, and improved recipes.

Members of the university’s management structures were present at the formal launch of NovaLogix – which took place on the UFS Bloemfontein Campus – including the Vice-Chancellor and Principal, Prof Francis Petersen; the Deputy Vice-Chancellor: Research and Internationalisation, Prof Vasu Reddy; and the Senior Director of the Directorate Research Development, Dr Glen Taylor. The deans of the two faculties that will be mainly involved in this partnership were also present, namely Prof Paul Oberholster, the Dean of the Faculty of Natural and Agricultural Sciences, and Prof Philippe Burger, the Dean of the Faculty of Economic and Management Sciences.

Among the attendees representing ZZ2 were Dr Tommie van Zyl, the Chief Executive Officer of the ZZ2 Group, Piet Prinsloo, Executive Manager at ZZ2, as well as Wiam Haddad, the new CEO of NovaLogix.

Co-creation and more sustainable outcomes

In his welcoming remarks, Prof Petersen stated that this event marks the culmination of a five-year journey that began in 2019 when he, Prof Burger, and Prof Danie Vermeulen, former Dean of the Faculty of Natural and Agricultural Sciences, first visited ZZ2 to initiate closer collaboration and cooperation.

He is of the opinion that the relationship with ZZ2 is ideally suited to assist the university in realising the core values of Vision 130, the university’s strategic intent to reposition the institution as one of the leading universities in South Africa by 2034.

The knowledge, experience, and expertise that ZZ2 brings to the partnership, complement the exciting and impactful research done by the university’s academics across a range of disciplines. - Prof Francis Petersen

Prof Petersen said that the UFS values partnerships with the private sector, and he considers ZZ2 to be a knowledge partner with co-creation as a key component in this collaboration.

“Working together on a challenge makes the solution more sustainable. I believe that innovation and this co-creation approach will generate outcomes that transform the agricultural sector and impart knowledge to the next generation,” he stated.

“The knowledge, experience, and expertise that ZZ2 brings to the partnership complement the exciting and impactful research conducted by the university’s academics across a range of disciplines. I am looking forward to a partnership that will grow from strength to strength,” concluded Prof Petersen.

Breakthrough developments in the pipeline

According to Dr Van Zyl, ZZ2 would like to continue building a future with the university based on a symbiotic relationship. “We want to ensure that our strengths as an organisation are put to good use,” he said, expressing a strong conviction that there will be breakthrough developments with this initiative.

This work will align with ZZ2’s ‘Work with nature’ journey that began more than two decades ago, steering away from conventional, industrial agriculture towards a system that aims to farm in harmony with nature. “It is important that we nurture nature while using her resources,” he said.

He is excited to work with the university, exploring improved techniques and technologies to find more effective ways towards a sustainable future. “Knowledge partners are important in this journey,” he stated.

Building on existing collaborations

In September 2022, the university entered into a collaboration agreement with ZZ2. The partnership between the two entities included the establishment of FreeFarm Innovation, a company that in turn has a holding in NovaLogix and is designed to leverage the strengths, capabilities, skills, and resources of both parties. Part of the operations of FreeFarm Innovation included opportunities for research, commercialisation, and the enhancement of agricultural products. This has come into effect in projects on, for example, business operations, agricultural sustainability, and innovative approaches to growing fruit and vegetables, to name but a few.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept