Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 January 2024 Photo SUPPLIED
Prof Anthony Turton
Prof Anthony Turton is a water expert from the Centre for Environmental Management at the University of the Free State.

Opinion article by Prof Anthony Turton, Centre for Environmental Management, University of the Free State. 


South Africa and Australia, both arid countries with historical ties to the British Empire, face significant water management challenges. Despite common legal and parliamentary systems, the two nations diverge in their approaches to water sector governance, leading to markedly different outcomes in economic prosperity.

In examining the disparities, it becomes evident that contemporary South Africa is grappling with a scenario resembling a failed state, particularly evident in the breakdown of the electricity and water services sector. This raises a fundamental question – why is the South African water sector faltering while its Australian counterpart thrives? 

Why is the South African water sector collapsing?

Addressing the collapse of the South African water sector requires a nuanced understanding rooted in historical context. The origins of the issue can be traced back to the British Empire’s consideration of federalism during the Anglo-Zulu War. While federalism found success in Canada and Australia, it failed to take root in South Africa.

Fast forward to the present, South Africa operates as a unitary state with a centralised water policy and national water law. This uniform approach leaves little room for local variation, resulting in a cookie-cutter model applied nationwide. Despite water being a constitutional right and given that free basic water is guaranteed to all, the sector faces challenges such as high levels of unaccounted-for water, leakages, and poor management. The absence of justiciable water rights and the separation of water from land ownership hinder private sector involvement. Consequently, utilities are reliant on government bailouts, a situation exacerbated by failing water and electricity grids, diminishing the tax base, and escalating unemployment. 

Australia’s flourishing water sector: A model of innovation 

Australia’s federal structure facilitates a diverse array of state policies and laws, promoting adaptability to local conditions. Boasting over 30 distinct water authorities, each tailored to meet local needs, Australia thrives on a justiciable water right system that allows private ownership. Market forces drive water to its most productive use, and investor confidence is a cornerstone in decision-making. 

Australia’s innovative and market-oriented approach has resulted in well-managed utilities with robust balance sheets. The ability to raise capital from the bond market reduces reliance on public funds for bailouts. Groundwater plays a vital role, accounting for around 40% of the total resource, while innovative technologies, such as seawater desalination, are embraced at the utility scale.   

South Africa’s water sector: uninvestable and facing challenges 

Contrastingly, South Africa’s water sector faces challenges. A lack of innovative approaches, coupled with a rigid, cookie-cutter methodology has stifled local imagination. The state’s hostility towards private capital has rendered the water sector generally uninvestable. While some large water boards still maintain strong balance sheets, the growing debt burden from non-payment by municipalities poses a threat. Limited development of groundwater at utility scale, coupled with a reluctance to replicate successful initiatives, further compounds the challenges. Sea water desalination, where it exists, is confined to small package plants in distressed municipalities along the coast, often seen as unsustainable. 

Australia’s innovative solutions: integrating technology and conservation

Australia stands out for its innovative solutions. With a vibrant private sector driving constant technological advancements, groundwater is a key element in most utilities, actively integrated into the grid and accounting for around 40% of the total resource. Building codes align with water conservation, ensuring rainwater harvesting and aquifer recharge are actively pursued at various levels, including suburb and city. The management of sewage, increasingly sophisticated water recovery from waste, and seawater desalination at utility scale funded by private capital showcase Australia’s forward-thinking approach.  

Centralisation versus decentralisation  

In conclusion, the weakness of South Africa’s water sector lies in the highly centralised approach, resulting in ineffective, one-size-fits-all solutions. Local authorities often lack imagination, relying heavily on taxpayers and hindering innovation. Suspicion towards capital and technology further limits the sectors development. In contrast, Australia’s decentralised approach fosters vibrant water utilities capable of attracting both capital and technology. Entrepreneurs’ initiatives in desalination and water recovery programmes inspire investor confidence, leading to capital influx and secure, water-efficient local economies.

News Archive

Heart-valve studies receive international recognition
2017-07-11

 Description: Heart-valve studies  Tags: Heart-valve studies  

Prof Francis Smit, Head of the Department of
Cardiothoracic Surgery at the UFS, and Manager of the
Robert WM Frater Cardiovascular Research Centre, with
Kyle Davis, Mechanical Engineer at the centre.

Photo: Rulanzen Martin

Three heart-valve studies which have been developed at the Robert WM Frater Cardiovascular Research Centre at the School of Medicine at the University of the Free State (UFS) were recently presented in Monte Carlo at the conference of the prestigious global Heart Valve Society (HVS).

These studies are all headed by Prof Francis Smit, Head of the Department of Cardiothoracic Surgery at the UFS, and Manager of the Robert WM Frater Cardiovascular Research Centre.
Prof Smit says the HVS is a combination of the former heart-valve societies of Europe and the US. “Studies on heart-valve disease, heart-valve-related products and operations, as well as the design and development of new valves were presented. There are both clinical and development divisions.

He says the study in which the hemodynamics of their redesigned mechanical poppet valve was compared to a commercial bi-leaflet mechanical heart valve, was named as the best poster presentation in the experimental valve development and numerical flow dynamics division. The study, which was presented by Kyle Davis, mechanical engineer at the centre, competed against some of the best heart-valve research units in the world.

The redesigned valve, based on the 1960s Cape Town poppet valve, has the potential to provide a low-cost solution for mechanical heart-valve replacement. It is possible to produce the titanium ring with 3-D printers and is, together with the silicon poppet valve, extremely inexpensive compared to current mechanical valve-manufacturing processes.
The advantages of this valve over current mechanical valves is that, due to the effective and laminar flow characteristics, as well as the simple locking mechanisms, there is a reduced chance of valve thrombosis, and the need for anti-clotting drugs is therefore limited.

It was also confirmed that the new valve more than meets the published FDA (Federal Drug Agency) requirements, which determine the minimum standards of valves for human use in the US.

The redesigned valve also has a very low platelet activation impact, which is responsible for platelet thrombosis and leads to valve thrombosis or strokes. This valve is another heart-valve project by the centre, which is also in the process of evaluating a tri-leaflet polyurethane valve developed by them.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept