Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 January 2024 Photo SUPPLIED
Prof Anthony Turton
Prof Anthony Turton is a water expert from the Centre for Environmental Management at the University of the Free State.

Opinion article by Prof Anthony Turton, Centre for Environmental Management, University of the Free State. 


South Africa and Australia, both arid countries with historical ties to the British Empire, face significant water management challenges. Despite common legal and parliamentary systems, the two nations diverge in their approaches to water sector governance, leading to markedly different outcomes in economic prosperity.

In examining the disparities, it becomes evident that contemporary South Africa is grappling with a scenario resembling a failed state, particularly evident in the breakdown of the electricity and water services sector. This raises a fundamental question – why is the South African water sector faltering while its Australian counterpart thrives? 

Why is the South African water sector collapsing?

Addressing the collapse of the South African water sector requires a nuanced understanding rooted in historical context. The origins of the issue can be traced back to the British Empire’s consideration of federalism during the Anglo-Zulu War. While federalism found success in Canada and Australia, it failed to take root in South Africa.

Fast forward to the present, South Africa operates as a unitary state with a centralised water policy and national water law. This uniform approach leaves little room for local variation, resulting in a cookie-cutter model applied nationwide. Despite water being a constitutional right and given that free basic water is guaranteed to all, the sector faces challenges such as high levels of unaccounted-for water, leakages, and poor management. The absence of justiciable water rights and the separation of water from land ownership hinder private sector involvement. Consequently, utilities are reliant on government bailouts, a situation exacerbated by failing water and electricity grids, diminishing the tax base, and escalating unemployment. 

Australia’s flourishing water sector: A model of innovation 

Australia’s federal structure facilitates a diverse array of state policies and laws, promoting adaptability to local conditions. Boasting over 30 distinct water authorities, each tailored to meet local needs, Australia thrives on a justiciable water right system that allows private ownership. Market forces drive water to its most productive use, and investor confidence is a cornerstone in decision-making. 

Australia’s innovative and market-oriented approach has resulted in well-managed utilities with robust balance sheets. The ability to raise capital from the bond market reduces reliance on public funds for bailouts. Groundwater plays a vital role, accounting for around 40% of the total resource, while innovative technologies, such as seawater desalination, are embraced at the utility scale.   

South Africa’s water sector: uninvestable and facing challenges 

Contrastingly, South Africa’s water sector faces challenges. A lack of innovative approaches, coupled with a rigid, cookie-cutter methodology has stifled local imagination. The state’s hostility towards private capital has rendered the water sector generally uninvestable. While some large water boards still maintain strong balance sheets, the growing debt burden from non-payment by municipalities poses a threat. Limited development of groundwater at utility scale, coupled with a reluctance to replicate successful initiatives, further compounds the challenges. Sea water desalination, where it exists, is confined to small package plants in distressed municipalities along the coast, often seen as unsustainable. 

Australia’s innovative solutions: integrating technology and conservation

Australia stands out for its innovative solutions. With a vibrant private sector driving constant technological advancements, groundwater is a key element in most utilities, actively integrated into the grid and accounting for around 40% of the total resource. Building codes align with water conservation, ensuring rainwater harvesting and aquifer recharge are actively pursued at various levels, including suburb and city. The management of sewage, increasingly sophisticated water recovery from waste, and seawater desalination at utility scale funded by private capital showcase Australia’s forward-thinking approach.  

Centralisation versus decentralisation  

In conclusion, the weakness of South Africa’s water sector lies in the highly centralised approach, resulting in ineffective, one-size-fits-all solutions. Local authorities often lack imagination, relying heavily on taxpayers and hindering innovation. Suspicion towards capital and technology further limits the sectors development. In contrast, Australia’s decentralised approach fosters vibrant water utilities capable of attracting both capital and technology. Entrepreneurs’ initiatives in desalination and water recovery programmes inspire investor confidence, leading to capital influx and secure, water-efficient local economies.

News Archive

Chemistry gets substantial grants
2013-06-10

 

At the experimental setup of the high temperature reduction oven for research in heterogeneous catalysis are, front from left: Maretha Serdyn (MNS Cluster prestige PhD bursar), Nceba Magqi (Sasol employee busy with his MSc in Chemistry) and Dr Alice Brink (Formal MNS Cluster postdoctoral fellow and lecturer in Inorganic Chemistry); back Profs Jannie Swarts (Head: Physical Chemistry), André Roodt, and Ben Bezuidenhoudt (Sasol Professor in Organic and Process Chemistry).
10 June 2013

Three research groups in the Department of Chemistry received substantial grants to the value of R4,55 million. The funding includes bursaries for students and post-doctoral fellows, mobility grants, running costs and equipment support, as well as dedicated funds for two young scientists in the UFS Prestige Scholar Programme, Drs Lizette Erasmus and Alice Brink.

The funding comes from Sasol, the THRIP programme of the National Research Foundation (NRF) and PetLabs Pharmaceuticals for the overarching thrust in Organic Synthesis, Homogeneous and Heterogeneous Catalysis. The programme has a broad focuse on different fundamental and applied aspects of process chemistry. Research groups of Profs Andreas Roodt (Inorganic), Jannie Swarts (Physical) and Ben Bezuidenhoudt (Organic / Process), principal members of the focus area of (Green) Petrochemicals in the Materials and Nanosciences Strategic Research Cluster (MNS Cluster) will benefit from the grant.

This funding was granted based on the continued and high-level outputs by the groups, which resulted in more than 40 papers featuring in international chemistry publications in merely the past year. A few papers also appeared in the top experimental inorganic chemistry journal from the American Chemical Society, Inorganic Chemistry. These high-impact papers address important issues in catalysis under the UFS Material and Nanosciences Research Cluster initiative, as well as other aspects of fundamental chemistry, but with an applied approach and focus.

Prof Andreas Roodt, Distinguished Professor and Chairperson of the Department of Chemistry, said the grants will enable the three research groups to move forward in their respective research areas associated with petrochemicals and other projects, and enable additional students in the department to benefit from it. It will also ensure that these groups can continue and maintain their research on different molecular and nano-scale materials. Current experiments include conversions under extremely high gas pressures (typical 100 times that in motor car tyres). This takes place at the molecular level and at preselected nano-surfaces, to convert cheaper feed-stream starting materials into higher value-added products for use as special additives in gasoline and other speciality chemicals.

The funding support forms part of the Hub-and-Spoke initiative at Sasol under which certain universities and specifically the UFS Department of Chemistry have been identified for strategic support for research and development. The department and the UFS gratefully acknowledge this continued and generous support from all parties concerned.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept