Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 January 2024 Photo SUPPLIED
Prof Anthony Turton
Prof Anthony Turton is a water expert from the Centre for Environmental Management at the University of the Free State.

Opinion article by Prof Anthony Turton, Centre for Environmental Management, University of the Free State. 


South Africa and Australia, both arid countries with historical ties to the British Empire, face significant water management challenges. Despite common legal and parliamentary systems, the two nations diverge in their approaches to water sector governance, leading to markedly different outcomes in economic prosperity.

In examining the disparities, it becomes evident that contemporary South Africa is grappling with a scenario resembling a failed state, particularly evident in the breakdown of the electricity and water services sector. This raises a fundamental question – why is the South African water sector faltering while its Australian counterpart thrives? 

Why is the South African water sector collapsing?

Addressing the collapse of the South African water sector requires a nuanced understanding rooted in historical context. The origins of the issue can be traced back to the British Empire’s consideration of federalism during the Anglo-Zulu War. While federalism found success in Canada and Australia, it failed to take root in South Africa.

Fast forward to the present, South Africa operates as a unitary state with a centralised water policy and national water law. This uniform approach leaves little room for local variation, resulting in a cookie-cutter model applied nationwide. Despite water being a constitutional right and given that free basic water is guaranteed to all, the sector faces challenges such as high levels of unaccounted-for water, leakages, and poor management. The absence of justiciable water rights and the separation of water from land ownership hinder private sector involvement. Consequently, utilities are reliant on government bailouts, a situation exacerbated by failing water and electricity grids, diminishing the tax base, and escalating unemployment. 

Australia’s flourishing water sector: A model of innovation 

Australia’s federal structure facilitates a diverse array of state policies and laws, promoting adaptability to local conditions. Boasting over 30 distinct water authorities, each tailored to meet local needs, Australia thrives on a justiciable water right system that allows private ownership. Market forces drive water to its most productive use, and investor confidence is a cornerstone in decision-making. 

Australia’s innovative and market-oriented approach has resulted in well-managed utilities with robust balance sheets. The ability to raise capital from the bond market reduces reliance on public funds for bailouts. Groundwater plays a vital role, accounting for around 40% of the total resource, while innovative technologies, such as seawater desalination, are embraced at the utility scale.   

South Africa’s water sector: uninvestable and facing challenges 

Contrastingly, South Africa’s water sector faces challenges. A lack of innovative approaches, coupled with a rigid, cookie-cutter methodology has stifled local imagination. The state’s hostility towards private capital has rendered the water sector generally uninvestable. While some large water boards still maintain strong balance sheets, the growing debt burden from non-payment by municipalities poses a threat. Limited development of groundwater at utility scale, coupled with a reluctance to replicate successful initiatives, further compounds the challenges. Sea water desalination, where it exists, is confined to small package plants in distressed municipalities along the coast, often seen as unsustainable. 

Australia’s innovative solutions: integrating technology and conservation

Australia stands out for its innovative solutions. With a vibrant private sector driving constant technological advancements, groundwater is a key element in most utilities, actively integrated into the grid and accounting for around 40% of the total resource. Building codes align with water conservation, ensuring rainwater harvesting and aquifer recharge are actively pursued at various levels, including suburb and city. The management of sewage, increasingly sophisticated water recovery from waste, and seawater desalination at utility scale funded by private capital showcase Australia’s forward-thinking approach.  

Centralisation versus decentralisation  

In conclusion, the weakness of South Africa’s water sector lies in the highly centralised approach, resulting in ineffective, one-size-fits-all solutions. Local authorities often lack imagination, relying heavily on taxpayers and hindering innovation. Suspicion towards capital and technology further limits the sectors development. In contrast, Australia’s decentralised approach fosters vibrant water utilities capable of attracting both capital and technology. Entrepreneurs’ initiatives in desalination and water recovery programmes inspire investor confidence, leading to capital influx and secure, water-efficient local economies.

News Archive

Collaboration between UFS and Mayo Clinic to revolutionise cancer treatment
2014-06-27



Attending the lecture were, from the left: Dr Chantel Swart, Prof Lodewyk Kock, Prof Debabrata Mukhopadhyay, Prof James du Preez; back: Prof Pieter van Wyk.
Dr Swart, Profs Kock and Du Preez are from the Department of Microbial, Biochemical and Food Biotechnology. Prof Mukhopadhyay is from the Mayo Clinic (US) and Prof Van Wyk is from the Centre for Microscopy at the UFS.
Photo: Supplied
The UFS made a discovery that may have enormous implications for the treatment of diseases in humans.

Since the discovery, the UFS joined forces with the Mayo Clinic in Rochester, US, in the fight against cancer.

In this collective effort, UFS researchers would be able to assist the Mayo team to:
• see how treatment in cancer patients is progressing,
• target treatments more effectively,
• reduce dosages in order to make treatment gentler on the patient,
• track the effectiveness of the chemotherapy drugs used, and
• gain an accurate view of how the cancer is being eliminated.

Prof Lodewyk Kock, Outstanding Professor at the Department of Microbial, Biochemical and Food Biotechnology, and his team incidentally created a technique to use argon gas particles for the first time on biological material to slice open cells to look inside.

The team that supported Prof Kock includes Dr Chantel Swart, Khumisho Dithebe (PhD student), Prof Hendrik Swart (Department of Physics) and Prof Pieter van Wyk (Centre for Microscopy).

Prof Debabrata Mukhopadhyay from the Mayo Clinic in Rochester, US, got to hear about this breakthrough at the UFS and a collaboration between the two institutions was established.

During a visit to the Bloemfontein Campus, Prof Mukhopadhyay explained novel techniques that make use of gold nanoparticles. These particles attach to chemotherapeutic drugs to selectively target cancer cells – dramatically decreasing the side effects to normal human cells.

For these new drugs (coupled to gold nanoparticles) to be accepted into clinical practice, visual and chemical proof is needed, though. This is where the technique developed by the UFS will play a vital role.

With the technique to look inside cells, the composition, location and metabolism of these drugs can be determined. This will aid in a proof of concept for the application of the nano-drugs. Furthermore, it will enable approval for use of these drugs in clinical trials and eventually could revolutionise cancer treatment as a whole.

For video lectures on the technique used, as well as its findings, follow these links:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept