Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 January 2024 Photo SUPPLIED
Prof Anthony Turton
Prof Anthony Turton is a water expert from the Centre for Environmental Management at the University of the Free State.

Opinion article by Prof Anthony Turton, Centre for Environmental Management, University of the Free State. 


South Africa and Australia, both arid countries with historical ties to the British Empire, face significant water management challenges. Despite common legal and parliamentary systems, the two nations diverge in their approaches to water sector governance, leading to markedly different outcomes in economic prosperity.

In examining the disparities, it becomes evident that contemporary South Africa is grappling with a scenario resembling a failed state, particularly evident in the breakdown of the electricity and water services sector. This raises a fundamental question – why is the South African water sector faltering while its Australian counterpart thrives? 

Why is the South African water sector collapsing?

Addressing the collapse of the South African water sector requires a nuanced understanding rooted in historical context. The origins of the issue can be traced back to the British Empire’s consideration of federalism during the Anglo-Zulu War. While federalism found success in Canada and Australia, it failed to take root in South Africa.

Fast forward to the present, South Africa operates as a unitary state with a centralised water policy and national water law. This uniform approach leaves little room for local variation, resulting in a cookie-cutter model applied nationwide. Despite water being a constitutional right and given that free basic water is guaranteed to all, the sector faces challenges such as high levels of unaccounted-for water, leakages, and poor management. The absence of justiciable water rights and the separation of water from land ownership hinder private sector involvement. Consequently, utilities are reliant on government bailouts, a situation exacerbated by failing water and electricity grids, diminishing the tax base, and escalating unemployment. 

Australia’s flourishing water sector: A model of innovation 

Australia’s federal structure facilitates a diverse array of state policies and laws, promoting adaptability to local conditions. Boasting over 30 distinct water authorities, each tailored to meet local needs, Australia thrives on a justiciable water right system that allows private ownership. Market forces drive water to its most productive use, and investor confidence is a cornerstone in decision-making. 

Australia’s innovative and market-oriented approach has resulted in well-managed utilities with robust balance sheets. The ability to raise capital from the bond market reduces reliance on public funds for bailouts. Groundwater plays a vital role, accounting for around 40% of the total resource, while innovative technologies, such as seawater desalination, are embraced at the utility scale.   

South Africa’s water sector: uninvestable and facing challenges 

Contrastingly, South Africa’s water sector faces challenges. A lack of innovative approaches, coupled with a rigid, cookie-cutter methodology has stifled local imagination. The state’s hostility towards private capital has rendered the water sector generally uninvestable. While some large water boards still maintain strong balance sheets, the growing debt burden from non-payment by municipalities poses a threat. Limited development of groundwater at utility scale, coupled with a reluctance to replicate successful initiatives, further compounds the challenges. Sea water desalination, where it exists, is confined to small package plants in distressed municipalities along the coast, often seen as unsustainable. 

Australia’s innovative solutions: integrating technology and conservation

Australia stands out for its innovative solutions. With a vibrant private sector driving constant technological advancements, groundwater is a key element in most utilities, actively integrated into the grid and accounting for around 40% of the total resource. Building codes align with water conservation, ensuring rainwater harvesting and aquifer recharge are actively pursued at various levels, including suburb and city. The management of sewage, increasingly sophisticated water recovery from waste, and seawater desalination at utility scale funded by private capital showcase Australia’s forward-thinking approach.  

Centralisation versus decentralisation  

In conclusion, the weakness of South Africa’s water sector lies in the highly centralised approach, resulting in ineffective, one-size-fits-all solutions. Local authorities often lack imagination, relying heavily on taxpayers and hindering innovation. Suspicion towards capital and technology further limits the sectors development. In contrast, Australia’s decentralised approach fosters vibrant water utilities capable of attracting both capital and technology. Entrepreneurs’ initiatives in desalination and water recovery programmes inspire investor confidence, leading to capital influx and secure, water-efficient local economies.

News Archive

Prof Hendrik Swart richly contributes to research of phosphors
2014-12-02

Prof Hendrik Swart
Photo: Merwelene van der Merwe

Since his appointment as the South African Research Chairs Initiative (SARChI) Chair, there has been a sharp increase in the number of papers and publications by Prof Hendrik Swart, Senior Professor in the Department of Physics at the University of the Free State (UFS). From January this year, he has already published 78 articles. Some of the journals that has published his work, includes:

• Nanotechnology (impact of 3.67)
• Dalton Transactions (impact of 4.097)
• Sensors and Actuators B: Chemical (impact 3.84)

“My biggest success, however, is the powerful group of researchers we have built over the years. Staff, postdocs and students – without them it would have been impossible. I am therefore much indebted to my groups on both the Bloemfontein and Qwaqwa Campuses.

“The good apparatus we acquired via a sponsorship from the National Research Foundation and Sasol is also one of the main reasons for this. The financial support I get from the university’s research office is of course also a contributing factor,” he says.

For the past 20 years, Prof Swart has been conducting research on any substance that glows. “I only adjust the focus to fit in with current trends,” he says.

Prof Swart believes that his research will make a contribution to the fundamental knowledge about phosphors, as well as to the training of good students for the academic and industrial world on the outside. For the man on the street, his research translates into better, brighter lights that use less energy.

His more recent research focuses on the development of nano-phosphors for light-emitting diodes (LEDS) and organic light-emitting diodes (OLED).

Prof Swart has presented papers on his research not only nationally, but all over the world – including countries in Europe and the East. Some of the most recent papers presented by him and his colleagues/postgraduate students include:

• Applications of AES, XPS and TOF SIMS to phosphor materials at die 15th European Conference on Applications of Surface and Interface Analysis 2013 in Forte Village Resort, Sardinia, Italy.
• Luminescent properties of phosphor nano thin films at the first International Symposium on Nanoparticles/Nanomaterials and Applications in Caparica (Lisbon, Portugal), where he was an invited speaker.
• Role of surface and deep-level defects on the emission of nano metal oxides at the 2014 NanoAfrica international conference, Vanderbijlpark, South Africa, where he delivered the keynote address.
• PHI systems and their modifications at KOVSIES at the PHI European User Meeting in Ismaning (Munich), Germany, where he was invited to speak.

Prof Swart also delivered the keynote address at the SETCOR International Conference on Smart Materials and Surfaces in Bangkok, Thailand. His lecture was titled, ‘Role of surface and deep-level defects on the emission and degradation of phosphor materials’.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept