Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 January 2024 Photo SUPPLIED
Prof Anthony Turton
Prof Anthony Turton is a water expert from the Centre for Environmental Management at the University of the Free State.

Opinion article by Prof Anthony Turton, Centre for Environmental Management, University of the Free State. 


South Africa and Australia, both arid countries with historical ties to the British Empire, face significant water management challenges. Despite common legal and parliamentary systems, the two nations diverge in their approaches to water sector governance, leading to markedly different outcomes in economic prosperity.

In examining the disparities, it becomes evident that contemporary South Africa is grappling with a scenario resembling a failed state, particularly evident in the breakdown of the electricity and water services sector. This raises a fundamental question – why is the South African water sector faltering while its Australian counterpart thrives? 

Why is the South African water sector collapsing?

Addressing the collapse of the South African water sector requires a nuanced understanding rooted in historical context. The origins of the issue can be traced back to the British Empire’s consideration of federalism during the Anglo-Zulu War. While federalism found success in Canada and Australia, it failed to take root in South Africa.

Fast forward to the present, South Africa operates as a unitary state with a centralised water policy and national water law. This uniform approach leaves little room for local variation, resulting in a cookie-cutter model applied nationwide. Despite water being a constitutional right and given that free basic water is guaranteed to all, the sector faces challenges such as high levels of unaccounted-for water, leakages, and poor management. The absence of justiciable water rights and the separation of water from land ownership hinder private sector involvement. Consequently, utilities are reliant on government bailouts, a situation exacerbated by failing water and electricity grids, diminishing the tax base, and escalating unemployment. 

Australia’s flourishing water sector: A model of innovation 

Australia’s federal structure facilitates a diverse array of state policies and laws, promoting adaptability to local conditions. Boasting over 30 distinct water authorities, each tailored to meet local needs, Australia thrives on a justiciable water right system that allows private ownership. Market forces drive water to its most productive use, and investor confidence is a cornerstone in decision-making. 

Australia’s innovative and market-oriented approach has resulted in well-managed utilities with robust balance sheets. The ability to raise capital from the bond market reduces reliance on public funds for bailouts. Groundwater plays a vital role, accounting for around 40% of the total resource, while innovative technologies, such as seawater desalination, are embraced at the utility scale.   

South Africa’s water sector: uninvestable and facing challenges 

Contrastingly, South Africa’s water sector faces challenges. A lack of innovative approaches, coupled with a rigid, cookie-cutter methodology has stifled local imagination. The state’s hostility towards private capital has rendered the water sector generally uninvestable. While some large water boards still maintain strong balance sheets, the growing debt burden from non-payment by municipalities poses a threat. Limited development of groundwater at utility scale, coupled with a reluctance to replicate successful initiatives, further compounds the challenges. Sea water desalination, where it exists, is confined to small package plants in distressed municipalities along the coast, often seen as unsustainable. 

Australia’s innovative solutions: integrating technology and conservation

Australia stands out for its innovative solutions. With a vibrant private sector driving constant technological advancements, groundwater is a key element in most utilities, actively integrated into the grid and accounting for around 40% of the total resource. Building codes align with water conservation, ensuring rainwater harvesting and aquifer recharge are actively pursued at various levels, including suburb and city. The management of sewage, increasingly sophisticated water recovery from waste, and seawater desalination at utility scale funded by private capital showcase Australia’s forward-thinking approach.  

Centralisation versus decentralisation  

In conclusion, the weakness of South Africa’s water sector lies in the highly centralised approach, resulting in ineffective, one-size-fits-all solutions. Local authorities often lack imagination, relying heavily on taxpayers and hindering innovation. Suspicion towards capital and technology further limits the sectors development. In contrast, Australia’s decentralised approach fosters vibrant water utilities capable of attracting both capital and technology. Entrepreneurs’ initiatives in desalination and water recovery programmes inspire investor confidence, leading to capital influx and secure, water-efficient local economies.

News Archive

Machinery and equipment to the value of R6 million acquired by UFS Instrumentation Division
2015-07-02

Photo: Supplied

At an information session held on the Bloemfontein Campus, the Instrumentation Division in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) introduced its new Computer Numeral Control (CNC) machines to the value of R6 million.

Initially, the primary aim of the Instrumentation workshop was to design, produce, and maintain special research equipment which is unavailable on the market, mainly for academic departments. The small-scale production focused on producing support material and equipment for research work.

However, with new equipment and machinery the Division now also can deliver a service to corporate companies and external associates.
 
The CNC machines include a 5-axis Vertical Machining Centre from Haas imported from America. This is one of only four in South Africa, with two in Johannesburg and one in Cape Town.  The lathe makes it possible to produce sophisticated parts, which were previously cumbersome and difficult to make. The machines also cover a wide spectrum in the mechanical field such as the the FLOW Water Jet, which cuts a wide variety of material ranging from titanium to wood without utilising heat, thus saving electricity. This makes it possible to cut a wide variety of materials.

With the new machinery now available, the Instrumentation Division is able to perform high quality and quantity production with precision.

“The advantage of the machinery is that it stimulates production, and is much faster and more accurate than the conventional way of doing things,” said Pieter Botes, Head of the Division.

Botes explained that, by having students and professional artisans at the university design and manufacture equipment, costs are reduced when compared with the expensive nature of equipment and tools found in the market. In addition, “the machines broaden the scope of research conducted” said Botes. The technical dynamics of the machinery advances the scientific knowledge needed to operate it, so bridging the gap between theory and practice.

The Central University of Technology, Signs Division Bloemfontein, Product Development Technology Station (PDTS), Maizey’s, and Knottco Truckparts are some of the university’s trade partners.

The workshop collaborates with the Chemistry, Physics, Microbiology, Botany, Agriculture, and Electronics departments, as well as the Institute of Groundwater Studies at the UFS, and others. These departments receive services in the form of pipette stands, containers for test tubes, bottles, laboratory trolleys, stands for cadavers for Anatomy, pump repairs, stainless steel bailers, filaments, and heaters.

The Instrumentation Division is, therefore, a vital support unit for the Faculty of Natural and Agricultural Sciences as well as the university at large.

Companies, institutions, or individuals who need the Division’s expertise may contact Pieter Botes on botespds@ufs.ac.za.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept