Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 January 2024 Photo SUPPLIED
Prof Anthony Turton
Prof Anthony Turton is a water expert from the Centre for Environmental Management at the University of the Free State.

Opinion article by Prof Anthony Turton, Centre for Environmental Management, University of the Free State. 


South Africa and Australia, both arid countries with historical ties to the British Empire, face significant water management challenges. Despite common legal and parliamentary systems, the two nations diverge in their approaches to water sector governance, leading to markedly different outcomes in economic prosperity.

In examining the disparities, it becomes evident that contemporary South Africa is grappling with a scenario resembling a failed state, particularly evident in the breakdown of the electricity and water services sector. This raises a fundamental question – why is the South African water sector faltering while its Australian counterpart thrives? 

Why is the South African water sector collapsing?

Addressing the collapse of the South African water sector requires a nuanced understanding rooted in historical context. The origins of the issue can be traced back to the British Empire’s consideration of federalism during the Anglo-Zulu War. While federalism found success in Canada and Australia, it failed to take root in South Africa.

Fast forward to the present, South Africa operates as a unitary state with a centralised water policy and national water law. This uniform approach leaves little room for local variation, resulting in a cookie-cutter model applied nationwide. Despite water being a constitutional right and given that free basic water is guaranteed to all, the sector faces challenges such as high levels of unaccounted-for water, leakages, and poor management. The absence of justiciable water rights and the separation of water from land ownership hinder private sector involvement. Consequently, utilities are reliant on government bailouts, a situation exacerbated by failing water and electricity grids, diminishing the tax base, and escalating unemployment. 

Australia’s flourishing water sector: A model of innovation 

Australia’s federal structure facilitates a diverse array of state policies and laws, promoting adaptability to local conditions. Boasting over 30 distinct water authorities, each tailored to meet local needs, Australia thrives on a justiciable water right system that allows private ownership. Market forces drive water to its most productive use, and investor confidence is a cornerstone in decision-making. 

Australia’s innovative and market-oriented approach has resulted in well-managed utilities with robust balance sheets. The ability to raise capital from the bond market reduces reliance on public funds for bailouts. Groundwater plays a vital role, accounting for around 40% of the total resource, while innovative technologies, such as seawater desalination, are embraced at the utility scale.   

South Africa’s water sector: uninvestable and facing challenges 

Contrastingly, South Africa’s water sector faces challenges. A lack of innovative approaches, coupled with a rigid, cookie-cutter methodology has stifled local imagination. The state’s hostility towards private capital has rendered the water sector generally uninvestable. While some large water boards still maintain strong balance sheets, the growing debt burden from non-payment by municipalities poses a threat. Limited development of groundwater at utility scale, coupled with a reluctance to replicate successful initiatives, further compounds the challenges. Sea water desalination, where it exists, is confined to small package plants in distressed municipalities along the coast, often seen as unsustainable. 

Australia’s innovative solutions: integrating technology and conservation

Australia stands out for its innovative solutions. With a vibrant private sector driving constant technological advancements, groundwater is a key element in most utilities, actively integrated into the grid and accounting for around 40% of the total resource. Building codes align with water conservation, ensuring rainwater harvesting and aquifer recharge are actively pursued at various levels, including suburb and city. The management of sewage, increasingly sophisticated water recovery from waste, and seawater desalination at utility scale funded by private capital showcase Australia’s forward-thinking approach.  

Centralisation versus decentralisation  

In conclusion, the weakness of South Africa’s water sector lies in the highly centralised approach, resulting in ineffective, one-size-fits-all solutions. Local authorities often lack imagination, relying heavily on taxpayers and hindering innovation. Suspicion towards capital and technology further limits the sectors development. In contrast, Australia’s decentralised approach fosters vibrant water utilities capable of attracting both capital and technology. Entrepreneurs’ initiatives in desalination and water recovery programmes inspire investor confidence, leading to capital influx and secure, water-efficient local economies.

News Archive

Newly operational sequencing unit in genomics at UFS
2016-09-09

Description: Next Generation Sequencing  Tags: Next Generation Sequencing

Dr Martin Nyaga and his research assistant,
Tshidiso Mogotsi in the Next Generation
Sequencing Laboratory.
Photo: Charl Devenish

The Next Generation Sequencing (NGS) unit at the UFS was established as an interdisciplinary facility under the Directorate for Research Development, Faculty of Health Sciences and Faculty of Natural and Agricultural Sciences.

The aim of the NGS facility is to aid internal and external investigators undertaking studies on Deoxyribonucleic acid (DNA) sequencing, assembly and bioinformatics approaches using the more advanced Illumina MiSeq NGS platform.

The NGS unit became operational in 2016 and is managed by Dr Martin Nyaga and administered through the office of the Dean, Faculty of Health Sciences, under the leadership of Prof Gert Van Zyl. Dr Nyaga has vast experience in microbial genomics, having done his PhD in Molecular Virology.

He has worked and collaborated with globally recognised centres of excellence in Prokaryotic and Eukaryotic genomics, namely the J. Craig Venter Institute and the Laboratory of Viral Metagenomics, Rega Institute, among others.

The unit has undertaken several projects and successfully generated data on bacterial, viral and human genomes. Currently, work is ongoing on bacterial and fungal metagenomics studies through 16S rRNA sequencing.

In addition, the unit is also working on plasmid/insert sequencing and whole genome sequencing of animal and human rotaviruses. The unit has capacity to undertake other kinds of panels like the HLA, Pan-cancer and Tumor 15 sequencing, among others.

Several investigators from the UFS including but not limited to Prof Felicity Burt, Prof Wijnand Swart, Dr Frans O’Neil, Dr Trudi O'Neill, Dr Charlotte Boucher, Dr Marieka Gryzenhout and Dr Kamaldeen Baba are actively in collaboration with the NGS unit.

The unit has also invested in other specialised equipment such as the M220 Focused-ultrasonicator (Covaris), 2100 Bioanalyzer system (Agilent) and the real-time PCR cycler, the Rotor-Gene Q (Qiagen), which both the UFS and external investigators can use for their research.

Investigators working on molecular and related studies are encouraged to engage with Dr Nyaga on how they would like to approach their genomics projects at the UFS NGS unit. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept