Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 January 2024 | Story Leonie Bolleurs | Photo Supplied
Zola Valashiya
Nearly a decade ago, Zola Valashiya completed his LLB at UFS and is currently working towards his second LLM in Technology and Innovation at the Seattle University School of Law.

Zola Valashiya graduated from the UFS almost ten years ago with an LLB. Since then, amid life’s twists and turns, he obtained an LLM from the University of Washington, secured a job with a successful law firm in the US, and married the love of his life. Currently, Zola is pursuing a second LLM in Technology and Innovation with the Seattle University School of Law.

Following the advice of a dear friend, Zola figured out what drives him and pursued it relentlessly. “This very simple piece of advice taught me the value of my time, and how much power you take back when you prioritise and protect it,” he remarks.

Advancing the greater good

Fast forward nine-plus years since UFS graduation day, Zola works as a strategic adviser at Coopersmith Law + Strategy, a boutique firm in Seattle specialising in health care, global health, gender/racial equality, and climate health.

“The legal work I do involves various tasks, from drafting legal contracts to conducting data analysis, and developing business strategies for deploying new technologies in health systems or addressing climate change. I value this environment because our efforts are focused on advancing the greater good. I have the opportunity to work on projects that I know will benefit individuals, communities, and the planet,” says Zola.

One of the highlights of his career occurred during the pandemic when he played a key role in preserving one of the largest US training programmes for physicians from diverse backgrounds who serve marginalised communities.

He explains, “The pandemic placed a strain on health-care systems worldwide, leading to cost-cutting measures in private hospitals, the termination of community health programmes, and the closure of small clinics in remote areas, in order to recover from the financial losses. However, these programmes and clinics are vital to the communities they serve because the nurses and doctors are often the only health-care providers for miles around. My contributions have helped to ensure the programme’s continuation, and the continued delivery of quality health care to underserved communities.”

Diversifying his skill set

For the future, Zola says he is working towards diversifying his skill set. “The modern-day lawyer needs to know more than just the law. I have learned coding skills, and I am currently focused on expanding my knowledge of artificial intelligence. In so doing, I am equipping myself with the necessary tools and expertise to thrive in this rapidly evolving field, thereby future-proofing my career.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept