Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 January 2024 | Story Leonie Bolleurs | Photo Supplied
Zola Valashiya
Nearly a decade ago, Zola Valashiya completed his LLB at UFS and is currently working towards his second LLM in Technology and Innovation at the Seattle University School of Law.

Zola Valashiya graduated from the UFS almost ten years ago with an LLB. Since then, amid life’s twists and turns, he obtained an LLM from the University of Washington, secured a job with a successful law firm in the US, and married the love of his life. Currently, Zola is pursuing a second LLM in Technology and Innovation with the Seattle University School of Law.

Following the advice of a dear friend, Zola figured out what drives him and pursued it relentlessly. “This very simple piece of advice taught me the value of my time, and how much power you take back when you prioritise and protect it,” he remarks.

Advancing the greater good

Fast forward nine-plus years since UFS graduation day, Zola works as a strategic adviser at Coopersmith Law + Strategy, a boutique firm in Seattle specialising in health care, global health, gender/racial equality, and climate health.

“The legal work I do involves various tasks, from drafting legal contracts to conducting data analysis, and developing business strategies for deploying new technologies in health systems or addressing climate change. I value this environment because our efforts are focused on advancing the greater good. I have the opportunity to work on projects that I know will benefit individuals, communities, and the planet,” says Zola.

One of the highlights of his career occurred during the pandemic when he played a key role in preserving one of the largest US training programmes for physicians from diverse backgrounds who serve marginalised communities.

He explains, “The pandemic placed a strain on health-care systems worldwide, leading to cost-cutting measures in private hospitals, the termination of community health programmes, and the closure of small clinics in remote areas, in order to recover from the financial losses. However, these programmes and clinics are vital to the communities they serve because the nurses and doctors are often the only health-care providers for miles around. My contributions have helped to ensure the programme’s continuation, and the continued delivery of quality health care to underserved communities.”

Diversifying his skill set

For the future, Zola says he is working towards diversifying his skill set. “The modern-day lawyer needs to know more than just the law. I have learned coding skills, and I am currently focused on expanding my knowledge of artificial intelligence. In so doing, I am equipping myself with the necessary tools and expertise to thrive in this rapidly evolving field, thereby future-proofing my career.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept