Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

Traffic in translation between French and Afrikaans follows unique direction
2017-11-21

 Description: Traffic in translation between French and Afrikaans  Tags: Traffic in translation between French and Afrikaans

At Prof Naòmi Morgan’s inaugural lecture were, from the left:
Profs Corli Witthuhn, Vice-Rector: Research; Morgan;
Heidi Hudson, Acting Dean of the Faculty of the Humanities;
and Angelique van Niekerk, Head of the Department of Afrikaans
and Dutch, German and French.
Photo: Stephen Collett

Translation is normally done from a so-called weaker language into a mightier one. This is one of the ways, according to author Antjie Krog in her book A Change of Tongue, which is used by a ‘weaker’ language to help it survive.

However, according to Prof Naòmi Morgan, Head of French in the Department of Afrikaans and Dutch, German and French at the University of the Free State (UFS), this is not the case with French, which is the mightier language, and Afrikaans.

Influence of translators on Afrikaans

“The number of translated titles from French into Afrikaans, from ‘great’ into ‘lesser’ language, is far more than the other way round, almost as if the translators wanted to make the Afrikaans-speaking readers literary self-sufficient, but did not feel the same need to extend the Afrikaans literature into other languages.”

This was Prof Morgan’s words on 8 November 2017 during her inaugural lecture entitled, Van Frans na Afrikaans: 100 jaar van byna eenrigting-vertaalverkeer, in the Equitas Auditorium on the Bloemfontein Campus. A PowerPoint presentation, with a symbolic background of the South African and French flags and relevant texts, formed part of her lecture. She also played video clips and pieces of music to complement it.

Among others, she has a doctorate in Modern French Literature from the University of Geneva, and her translations have earned her a French Knighthood and various prizes. She is also well-known for her translations and involvement in dramas such as Oskar en die Pienk Tannie and Monsieur Ibrahim en die blomme van die Koran.

Greater challenges in this direction

In her lecture, she looked at the two-way traffic from French into Afrikaans and from Afrikaans into French.

Three French citizens, Pierre-Marie Finkelstein, Georges Lory, and Donald Moerdijk, have translated from Afrikaans into French. Of course, their background and ties with South Africa also had an influence on their work. “In Moerdijk’s case, translation from Afrikaans, his second language, was a way in which to recall the country he left in his mind’s eye,” she said.

Prof Morgan is one of only two translators who translates works from Afrikaans into French, the other being Catherine du Toit. However, translations in this direction pose greater challenges. She said it involves “not only knowledge of the language, but also knowledge of the French target culture and literature”. In addition, there aren’t any good bilingual dictionaries, and the only Afrikaans-French dictionary is a thin volume by B Strelen and HL Gonin dating from 1950.

Prof Morgan still believes in translation

She believes there is a need to hear foreign languages such as French in the form of music in Afrikaans, and the speaking of a language alone might not be enough to ensure its survival. 

She still believes in translation, and quoted Salman Rushdie’s Imaginary homelands: essays and criticism 1981-1991 in this respect: “The word ‘translation’ comes, etymologically, from the Latin for ‘bearing across’. Having been borne across the world, we are translated men. It is normally supposed that something always gets lost in translation; I cling, obstinately to the notion that something can also be gained.”

Click here for Prof Morgan’s full lecture (only available in Afrikaans).

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept