Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

‘Is the South African university curriculum ‘colonial'?’ asks Prof Jansen
2017-11-24

Description: Jansen readmore Tags: Prof Jonathan Jansen, colonial, university curriculum, western knowledge

From left; Prof Corli Witthuhn, Vice-Rector: Research; former Rector and Vice-
Chancellor of the UFS, Prof Jonathan Jansen; Prof Michael Levitt, and
Prof Francis Petersen at the celebration lecture at the UFS.
Photo: Johan Roux

One of the critical issues that emerged from the South African student protests during 2015 and 2016 was a demand for the decolonisation of university curriculums. 

A senior professor at the Stellenbosch University, Prof Jonathan Jansen, said the number of people, including academics, who joined the cause without adequately interrogating the language of this protest, was astonishing. “The role of social scientists is to investigate new ideas … when something is presented to the world as truth.” Prof Jansen was speaking during a celebration lecture at the University of the Free State in Bloemfontein on 15 November 2017. 

Large amount of knowledge not African

He said the accusation is correct to a limited degree. “The objection, in essence, is against the centring of Western, and especially European knowledge, in institutional curricula.” There is no doubt that most of what constitutes curriculum knowledge in South African universities, and in universities around the world, derive from the West. “The major theories and theorists, the methodologists and methods are disproportionally situated outside of the developing world,” Prof Jansen said. 

The dilemma is, how will South Africa and the continent change the locus of knowledge production, considering the deteriorating state of public universities? “In the absence of vibrant, original, and creative knowledge production systems in Africa and South Africa, where will this African-centred or African-led curriculum theory come from,” Jansen asked. He says the re-centring of a curriculum needs scholars with significant post-doctoral experiences that are rooted in the study of education and endowed with the critical independence of thought. “South Africa's universities are not places where scholars can think. South African universities’ current primary occupation is security and police dogs,” Prof Jansen said. 

Collaboration between African and Western scholars
“Despite the challenges, not everything was stuck in the past,” Prof Jansen said. South African scholars now lead major research programmes in the country intellectually. The common thread between these projects is that the content is African in the subjects of study, and the work reflects collaboration with academics in the rest of the world. These research projects attract postgraduate students from the West, and the research increasingly affects curriculum transformations across university departments. There is also an ongoing shift in the locus of authority for knowledge production within leading universities in South Africa. Prof Jansen feels a significant problem that is being ignored in the curriculum debate, is the concern about the knowledge of the future. How does South Africa prepare its young for the opportunities provided by the groundswell of technological innovation? “In other parts of the world, school children are learning coding, artificial intelligence, and automation on a large scale. They are introduced to neuroscience and applied mathematics,” he said.

Prof Jansen said, in contrast, in South Africa the debate focuses on the merits of mathematics literacy, and what to do with dead people’s statues.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept