Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

UFS welcomes Constitutional Court’s ruling on its Language Policy
2017-12-29



The executive management of the University of the Free State (UFS) welcomes today’s judgement by the Constitutional Court in favour of the university’s Language Policy. The judgement follows an appeal lodged by AfriForum against the judgement and order delivered by the Supreme Court of Appeal (SCA) on the implementation of the UFS Language Policy on 28 March 2017. 
 
In a majority ruling, Chief Justice Mogoeng Mogoeng denied AfriForum’s application for leave to appeal the SCA’s ruling, and said the UFS Council’s approval of the Language Policy was lawful and constitutionally valid. The court found that the adoption of the Language Policy was neither inconsistent with the provisions of the Constitution, nor did it violate the Constitutional rights of any students and/or staff members of the UFS.
 
Today’s landmark judgement is not only paving the way for the UFS to continue with the implementation plan for its Language Policy as approved by the UFS Council on 11 March 2016, but it is also an indication of the value which the university’s decision to change its Language Policy to English as primary medium of instruction has on higher education in South Africa.
 
“The judgement by the Constitutional Court is not a victory against Afrikaans as language. The UFS will continue to develop Afrikaans as an academic language. A key feature of the UFS Language Policy is flexibility and the commitment to strive for a truly multilingual environment. Today’s judgement allows the UFS to proceed with the implementation of its progressive approach to a language-rich environment that is committed to multilingualism,” says Prof Francis Petersen, Rector and Vice-Chancellor of the UFS.
 
According to Prof Petersen, the UFS is dedicated to the commitments in the Language Policy and, in particular, to make sure that language development is made available to students in order to ensure their success as well as greater levels of academic literacy – especially in English. This includes contributing to the development of Sesotho and isiZulu as higher-education languages within the context of the needs of the different UFS campuses.
 
“We can now continue to ensure that language is not used or perceived as a tool for the social exclusion of staff and/or students on any of the three campuses, and continue to promote a pragmatic learning and administrative environment committed to and accommodative to linguistic diversity within the regional, national, and international environments in which the UFS operates,” says Prof Petersen.
 
The UFS is the first university in South Africa appearing before the Constitutional Court regarding its Language Policy. 
 
During 2017, the Faculties of Health Sciences, the Humanities, and Law started with the implementation of the new Language Policy at first-year level. This includes the presentation of tutorials in Afrikaans. The remaining faculties will start implementing the policy as from 2018.

Released by:
Lacea Loader (Director: Communication and Brand Management)
Telephone: +27 51 401 2584 | +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za
Fax: +27 51 444 6393

Related articles:
UFS welcomes unanimous judgement about its Language Policy in the Supreme Court of Appeal (28 March 2017)
Judgement in the Supreme Court of Appeal about UFS Language Policy (17 November 2016)
Implications of new Language Policy for first-year students in 2017 (17 October 2016)
UFS to proceed with appealing to Supreme Court of Appeal regarding new Language Policy (29 September 2016)
UFS to lodge application to appeal judgment about new Language Policy (22 July 2016)
High Court ruling about new UFS Language Policy (21 July 2016)
UFS Council approves a new Language Policy (11 March 2016)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept