Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

Change and growth at the University of the Free State
2011-07-04

 

Graphical representation of the High Performance Centre

“Come gather round people, wherever you roam. And admit that the waters around you have grown…”

These are the opening lines of Bob Dylan’s iconic single The times they are-a changing. They are also extremely apt words to describe the excitement about the winds of change and growth blowing across the University of the Free State, not only academically, but also physically.

Over the past few months there has been non-stop construction and growth of a physical nature, with several new buildings being erected and new sculptures rising up all over the Bloemfontein Campus.

The most visible and probably the most striking of all the new structures is the brand-new main entrance to the campus. This stunning new feature welcomes visitors to the campus in Nelson Mandela Drive, in the colours of each of the university’s seven faculties.

Once through this beautiful new gate, visitors have a choice of new and exciting features to explore on the campus.

The first is the brand new climbing wall, which is located against the West Block and Chemistry Buildings. This new addition to the campus is available for use by all enthusiasts of this exciting sport.

The Office of the Dean of Student Affairs manages the administration of the wall and students who want to climb can book at their office in the Student Centre at the Thakaneng Bridge. In order to ensure that students do not use the wall without permission, and to prevent accidents, the wall is covered by a tarpaulin, which is locked when the wall is not in use.

Next on the list of new developments is the high-performance gymnasium which is currently still under construction. With this project the university wants to create a work environment for its staff that will not only contribute to the cultivation of maximum work performance, but also to staff wellness.

The centre with its foyer and administrative offices will also consist of a health desk, university sports institute, sports sales, a spinning and aerobic centre, and dressing rooms. The total area will extend more than 2114 m².

Progress on other building projects, which commenced last year, is also very pleasing. One of the projects is a new Education Building which is being constructed opposite the UFS Sasol Library. Upon completion, this building will be used for the training of maths and science teachers in the Foundation Phase. It will include three classrooms for 100 students each and an auditorium for 225 students as well as an office block. The auditorium will also be used as a classroom. The building has been designed according to environmentally friendly principles to save water and use power effectively. Construction is going swimmingly and should be completed soon.

Planning for the construction of more student accommodation on the Bloemfontein Campus as well as the Qwaqwa Campus is also well underway. On the Qwaqwa Campus, a residence with 200 beds is being constructed. This also includes a computer laboratory. According to the planning, this residence is near completion. Furthermore, four residences will be constructed on the Bloemfontein Campus. These residences are in the planning phase.

In order to place technology within reach of Kovsie students and thereby empowering them, computer laboratories were installed at all residences. The computer laboratories will eventually make provision for approximately185 computers for student use. Proper security is also planned to safeguard the equipment.
A brand-new building for the Faculty of Health Sciences is also proceeding rapidly. This building will include a lecture hall for 200 students, five venues for 100 students each, as well as offices. Students from the School for Medicine and Occupational Therapy will make use of these facilities.

The new building for the Faculty of Economic and Management Sciences between the Flippie Groenewoud Building and the Wynand Mouton Theatre is also coming along nicely.

On the university’s Qwaqwa Campus a new Education building is being constructed. This building will include a lecturing hall with 100 seats, four 50-seat classrooms, six offices, ablution facilities, biology and science laboratory, as well as an information technology laboratory for 60 students.

In the meantime, existing buildings are being renovated on all the campuses. This includes, amongst others, improvements to the Architecture Building, the Biotechnology Building and the quarters for service workers on the Bloemfontein Campus. Other improvements that have already been completed include renovations to the Odeion’s foyer and the Callie Human Centre.

A special memorial park for women, residential accommodation within a sports environment, and a botanical garden are also among the beautiful, exciting new sites to be seen on the campus.

Coupled with all the beautiful sculptures, funded by the Lotto Sculpture project, our university’s campuses will soon be a more vibrant, beautiful attraction.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept