Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

Important message to UFS students on NSFAS and financial aid in general
2013-02-01

31 January 2013

Dear Students

There remains some uncertainty as well as misinformation within the student body concerning NSFAS and financial aid in general. This communication is intended to provide the facts on the state of student funding at the University of the Free State (UFS). I hope you find this information helpful and that it would guide you in your decisions as you wait to hear from, or hopefully receive funding from NSFAS or any other source.

  1. Every year the Department of Higher Education and Training (DHET) determines how much funding is available to fund students at all universities in South Africa; this is determined in part by the student numbers. Universities do not ask for, or determine the DHET allocation and are instructed by government that “NSFAS will ensure that the universities comply with the processes, procedures…for the allocated funds.”

  2. On 14 December 2012 the UFS received notice from the DHET that our total allocation would be R108,331,215.66 and that this amount must be apportioned in the following categories:
    General NSFAS Funding R85,174,275.07
    Teacher Training R2,291,940.59
    Disability Funding R1,265,000.00
    Final-Year Programme R19,600,000.00

  3. The UFS received 5 952 applications for NSFAS funding and with the available funding we can only finance up to 3 000 students on the Qwaqwa and Bloemfontein Campuses, provided that those students satisfy the stringent criteria, e.g. the so-called “national means test” determined for all universities in the country. If we funded more students that the available monies allow, the university would be held accountable by the NSFAS Board and the DHET and this would threaten future funding.

  4. Students apply in the previous year and therefore late applications are less likely to receive funding.

  5. Academic merit also counts, therefore students who fail one or more modules are less likely to receive new or ongoing support from NSFAS. The combination of academic standing and financial need are among the important criteria in decision-making on NSFAS funds.

  6. The UFS is one of the few universities with a very efficient record in using every cent made available to support poor students; we are proud of this record. No money is sent back to NSFAS, except small amounts not claimed by students in the disability category. The university is not allowed to shift funds between categories as described in point #2 above.

  7. Allocations are not based on campus, but need.

  8. The UFS sets aside an additional R35,7 million (in 2013) from within its own budget as bursaries so that we can accommodate as many students as possible. We spend every cent of this funding on students.

  9. The UFS also raises millions in bursaries from the private sector to support poor and promising students, though these funds are often linked to the industry granting the money, e.g. Investec for Accounting students and SASOL for Chemistry students. This recruitment of bursaries is a 24/7 commitment of the Marketing Office and the Faculties and Heads of Departments are also active in raising funds from government agencies, parastatals and the private sector for students in their units.

  10. After almost all our 2013 funds were allocated in favour of students, we calculated a shortfall in the NSFAS allocation of approximately R51 million. We are in the process of making an urgent submission to NSFAS to consider this additional allocation, but we cannot guarantee that this plea can or will be met.

Finally, I want all our students to know that the University of the Free State works very hard to raise every cent we can to provide poor students with funding for their studies. Many of my colleagues, including support staff, who do not earn very much, use some of their meagre personal resources to help a student with money for registration or clothing or food. In fact, the No Student Hungry Campaign that raises more than R600,000 by UFS volunteers annually, is another mechanism for trying to assist students who might have money for studies, but not much else.

We do this because we care, and because this is what The Human Project at Kovsies is all about.

I therefore ask for your patience as we continue our labour of raising the funds that enable every deserving student to continue their studies at the University of the Free State.

Should you have any further questions about NSFAS, please leave an email inquiry on choanet@ufs.ac.za or mallettca@ufs.ac.za and we will endeavour to provide you with the information you require.

Sincerely Yours

Jonathan D Jansen
Vice-Chancellor and Rector
University of the Free State

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept