Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

Juan Odendaal on his way to World Champs
2015-03-23

Juan Odendaal
Photo: BOOGS Photography, Andrew McFadden

UFS’s athletes with disabilities are currently excelling in cycling and athletics.

The UFS Para-cyclist, Juan Odendaal, will soon make his debut for South Africa at the 2015 Union Cyclist International (UCI) Para-cycling Track World Championships in Apeldoorn, The Netherlands, from 26-29 March 2015.

The Championship event will provide an excellent foundation for re-building the international competitiveness of South Africa’s Para-cycling track team in the build-up to Rio 2016. In a situation where the UCI has hosted relatively few international track competitions over the past three years, the 2015 World Championships will serve as a stepping-stone to the 2016 grand season, when it is expected that the country’s top riders will reach their peak competitive condition.

As the youngest member of the South African team, Odendaal will use the opportunity of competing in the individual time trial and team sprint events to build a platform for an international career will certainly span many years to come.

Another UFS student, Musa Simelane, are excelling and was chosen for the SA Wheelchair Rugby tean, known as the "Wheelboks". They will compete in the 2015 World Wheelchair Rugby Challenge in London in October and after that head to Japan to compete in the 2015 Asia Oceania Championships.

On a local level, earlier in March this year, other UFS athletes with disabilities also performed well on the athletics track.

Blind athlete and member of the Bloemfontein Campus Student Representative Council (SRC), Louzanne Coetzee, also had a good 1500m race in the beginning of March when she qualified easily for the World Championships, which will take place in Toronto, Canada, later this year. Coetzee and her guide, Rouxné Jacobs, set up a time of 5:45.86, which is well under the required standard of 6 minutes.

The other blind UFS athlete, Danie Breitenbach, alongside his guide Marius Wessels, broke his own national record for the 800m again on Friday 6 March 2015. In November 2014, Breitenbach’s record stood at 2:15.17. This record now stands at 2:13.57. Chances now are that Breitenbach will reach his goal of running the 800m under 2:10 at the Nedbank National Championship for the Physically Disabled at the end of March 2015.

The other Kovsie stars who will be participating at the Nedbank National Championship for the Physically Disabled are as follows:

Athletes:
• Dineo Mokhosoa
• Louzanne Coetzee
• Danie Breitenbach
• Juanré Jenkinson
• Diederich Kleynhans
• Jacques de Bruyn

Swimmer:
• Johann van Heerden

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept