Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

Access to the Bloemfontein Campus
2015-04-02

Access Control Made Easy

The first phase of access control at the University of the Free State (UFS) was implemented in August 2014. The aim of this initiative is to tighten security measures on the Bloemfontein Campus.
 
Since November 2014, access control has been implemented at all five gates on the Bloemfontein Campus. These are:

  • The Main gate in Nelson Mandela Drive (Gate 1)
  • The gate in DF Malherbe Drive (Gate 5)
  • The gate in Wynand Mouton Drive (Gate 3) 
  • The gate in Furstenburg Street (Gate 4)
  • The gate in Badenhorst Street (Gate 2)

Here is some useful information about the access control system:

1. Remember your access card when you enter the campus

Dual-function cards (with distance reader compatibility) will make your movement through the gates more convenient. The university’s access system works automatically with remote or swipe action. Please make sure that you drive close to the reader or, better still, get the dual-frequency card to manage the distance between your vehicle and the remote card reader.

As of 23 March 2015, the extra security staff, who have been assisting at the gates since the implementation of access control on the Bloemfontein Campus, are no longer manning the card readers at the gates. Therefore, persons without cards will be able to enter the campus only at the one gate in DF Malherbe Drive where the Visitors Centre is situated. They will be referred to the Visitors Centre, where a day visitor’s card will be issued to them. You will need to produce a formal identification document (e.g. ID book, driver's licence).

Security will continue their normal duties at the guardhouses for the various gates on the campus.

2. Where do I get an access card?

You can apply at the university’s Visitors Centre front desk by producing your positive identification (ID book/passport/driver’s licence) and proof of payment for your access card.

You will then be directed to the Thakaneng Bridge where you will be able to collect your access card.

  • Go to the Cashier on the Thakaneng Bridge and pay your R65 for the dual-frequency card
  • Take your receipt, together with your existing card (if you have one), to the Card Division on the Thakaneng Bridge (next to Mellins Optometrists)
  • A new photo will be taken of you at the Card Office for your new card. Your new card will then be issued immediately.

Currently, there is a sufficient stock of the dual-frequency cards available at the Card Division on the Thakaneng Bridge.
 
Alternatively, you can apply online for your access card: http://apps.ufs.ac.za/cardapplication/application.aspx

Make sure you have the following documents ready to attach when completing the online form:

  • Copy of positive identification: ID/Driver's Licence/Passport
  • Signed declaration (http://supportservices.ufs.ac.za/dl/Userfiles/Documents/00007/4668_eng.pdf) by your service provider/employer (if you are a service provider) or a letter of confirmation from your spouse/partner/relative/coach/relevant UFS staff member or student in cases where you have to visit, pick-up or drop off your spouse/partner/relative frequently on the UFS Bloemfontein Campus.

Cost: R65 for a long-term card and free of charge for short-term visits and conference delegates. Pay at the Cashier on the Thakaneng Bridge or at Absa Bank, Account Number: 1 570 8500 71, Ref: 1 413 07670 0198.

3. Cutoff Date: 7 April 2015

After 7 April 2015, no pedestrian or motorist will be able to enter the campus without a valid access card. Persons without access cards will have to enter the campus at the gate in DF Malherbe Drive where the Visitors Centre is situated. You will then be referred to the Visitors Centre where you will have to apply for a day visitor’s card. It is important to note that no one will be able to enter the campus at the Visitors Centre without a formal identification document (e.g. ID book, driver's licence).

4. Dual-frequency card simplifies access to the campus

It is important to have your card ready on entering the campus.

This card will simplify access to the campus considerably, as the card reader will read the card when it is held in a vertical position at the driver’s side window in the direction of the distance reader. Please do not place the card on the dashboard. There is an antenna wire in the card. If the card is placed on the dashboard, you are not exposing the card surface to the reader, and that might influence the antenna’s response to the reader.

Remember, the distance between the reader and the boom is only a few metres.  If you approach the reader at a ’high’ speed, you are not allowing the system to identify your card, match it to the entry in the database, check if you are ‘legal’, and then send a signal to open the boom. 

All five gates are equipped with distance readers. Within the next three weeks, two extra distance readers will also be installed at the Main Gate in Nelson Mandela Drive.
 
Please note that the dual-frequency card is needed only when you enter the campus with a vehicle and you want to activate the distance reader. All the older cards will continue to work at the tag readers. 

5. Use alternative gates

At times, some of the gates carry more traffic than others, especially with the peak morning and afternoon traffic. Gates with less traffic include:

  • The gate in Badenhorst Street
  • The gate in DF Malherbe Drive
  • The gate in Nelson Mandela Drive

You are welcome to make use of one of these alternative gates.

6. Pedestrians

No pedestrian will be able to enter the Bloemfontein Campus without a valid access card. If you have left your card at home or have lost it, you should enter the campus at the gate in DF Malherbe Drive where the Visitors Centre is situated. You will be referred to the Visitors Centre where you can apply for a day visitor’s card. You will still need to produce a formal identification document (e.g. ID book, driver's licence).

7. More information

Email: visitorscentre@ufs.ac.za
Visitors Centre front desk: Tel: +27 51 401 7766 (Mondays-Fridays 07:45-16:30)
Card Division: Tel: +27 51 401 2799 (Mondays-Fridays 07:45-16:30)
Protection Services duty room: +27 51 401 2634 (24 hours)

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept