Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

Getting out of the dark
2015-06-10

 

ESKOM is making daily announcements on the status of the power grid.

Anton Calitz, Electrical Engineer at University Estates, is in continuous contact with Eskom and Centlec in an effort to stay abreast of load shedding.

According to Anton, Eskom has recently - the week of 20 April - been focusing on the evening peak, and has announced STAGE 1 load shedding from 17:00-22:00; thus, the Bloemfontein Campus should be able to continue business as usual during the day, except for Thursdays from 18:00 and, possibly, Fridays from 17:00.

Where can I get more information about load shedding stages?

Apart from Eskom’s webpage, staff can also visit GRID WATCH. Click on "Search", then under "Schedules". Look for "Mangaung Local Municipality", and select "GROUP 4". Save this location. “This can even be loaded onto your mobile device.”

“The time slots can be seen for a couple of days in advance, to allow us to plan around the possibility of load shedding in our daily lives,” said Anton.

Please note: ESKOM can change the STAGE level at any time. Therefore, keep an eye on GRID WATCH and News24.

View the typical seven-day planner for the Bloemfontein Campus (Group 4), which indicates the STAGE 2 and 3 possibilities. Take note that, on some days, the STAGE 2 and 3 time slots are the same.

More load shedding tips: Your IT needs

The UFS Data Centre (Computer Room) is fully serviced by a generator facility, and can function without external power supply for a few days.

The generator servicing the UFS data centre does NOT provide power to the outlying facilities. This implies that all digital equipment at gates, booms, and access points will be shut down until the power is restored to these facilities. “We are now, in collaboration with Nico Janse van Rensburg, in a process to install UPS facilities at these points, which will ensure two to three hours of power supply at these points, even during load shedding,” said Dr Vic Coetzee, Senior Director: ICT Services.

No Wi-Fi will be available, as it is dependent on the power supply to the buildings where it is installed.

All servers are contained in the data centre, and will be kept running by our generators.

How to manage load shedding and your IT needs:

1. Get into the habit of saving your work regularly on computer so that you don’t lose your work/files during load shedding.
2. Back up important data. Keep to a schedule of regular back-up.  Make sure your computer back-ups are safe and recoverable.
3. Keep all electronic devices charged and ready to run on battery power. Keep your cellphone charged: some old-style Telkom landlines will still operate during power outages, but others won't.
4. Remember, when power supply is restored, it sometimes happens that a power surge is sent through the network, which will damage your computer.  Fortunately, laptop computers will not suffer this fate as their power is provided through an external power pack. Often, this power pack will be damaged, but not the laptop itself.
5. It makes good sense to reboot your computer daily, not only in terms of power shedding, but also in terms of updating the drivers, software, etc.
6. Switch off all computers and other electrical equipment at the wall plug overnight and on weekends.
7. Should your IT equipment not switch on after a power outage, log a call with the ICT Services. You can also call them at x2000.

More information, guidelines and contact numbers

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept