Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

Shimlas had the right attitude, says Scholtz
2016-02-10

 Description: Shimlas first match 2016  Tags: Shimlas

The lively Shimla flanker Daniel Maartens, who was the leading try scorer in the 2015 Varsity Cup, made a good impact as substitute against Ikeys in Cape Town.
Photo: Johan Roux

His rugby team had the right attitude to win in difficult conditions in Cape Town.

This is what Hendro Scholtz, Head Coach of Shimlas, had to say after the University of the Free State (UFS) started its Varsity Cup campaign on 8 February 2016 with a victory of 23-17 over Ikeys.

According to him, the UFS had to sweat hard until the end on a windy Green Mile, which has been the downfall of many opponents before. His substitutes also had a great impact.

Troublesome Cape wind

Shimlas have a tough draw this year, and to start in the Mother City was a huge task. Scholtz and his men have only three home matches and will play against most of the major teams in away matches.

“We knew it would be difficult in Cape Town. With the wind blowing as it does, one can't play as you would like to during the rest of the season,” the coach said.

“The guys had a will to win.”

The former Springbok believes that too much cannot be read from the first round results. The Shimlas will play their second match on 15 February 2016 against Tuks in Pretoria.

Replacements with good impact

Only the prop Rudolph Botha, flanker Fiffy Rampeta, and prop Teunis Nieuwoudt, who started against Ikeys, were involved in the 2015 final against Pukke.

Other big Shimla names, such as the prop Ox Nche, hooker Elandré Huggett, prop Conraad van Vuuren, and flanker Daniel Maartens, were sent onto the field in Cape Town after half-time.

“We had a plan with the replacements for the second half. They made a huge difference,” Scholtz said.

Rampeta was named Man of the Match, but it was Maartens and Co who turned the game in their team's favour in the second half.

Matsoele could be out of action for long

The Shimla fullback, Sechaba Matsoele, had to leave the game against Ikeys early because of a knee injury, and could be out of action for some time.

His scrumhalf, Zee Mkhabela, was also injured (by a blow to the head), so Shimlas will have to keep their fingers crossed for his quick recovery.

Scorers:
Shimlas 23 (7): Tries: Arthur Williams, Nardus Erasmus, Mosolwa Mafuma. Conversions: Stephan Janse van Rensburg (2).
Ikeys 17 (0): Tries: Khanyo Ngcukana, Nathan Nel. Conversion: Hilio de Abreu. Penalty: De Abreu.
Other results (home team first): Tuks 15, Pukke 38; UJ 19, Madibaz 12; Maties 40, CUT 0.

 

 

 

 


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept