Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

Shimlas have a bunch of fighters for a tough week, says Scholtz
2016-03-18


Scrumhalf Zee Mkhabela is one of the senior Shimla players who will have to help his team play three Varsity Cup matches within a week. Photo: Christaan Kotzé/SASPA

Luckily, he has a bunch of fighters in his rugby group to take on the week ahead, which is almost like a USSA rugby week with a lot of matches in a row.

This is what Hendro Scholtz, the Shimla coach, had to say about the upcoming Varsity Cup week, with his team playing three games within a week. His team will play against the University of Johannesburg (UJ) on 21 March 2016, after which they will face Maties in Cape Town on 24 March 2016, and then take on Pukke in the Mother City on 28 March 2016.

The schedule for the Varsity Cup series had to be adapted due to the recent unrest on campuses across South Africa.

According to Scholtz, the versatility of his players and the attitude of the University of the Free State (UFS) rugby team counts in their favour for the week that lies ahead. Several of the Shimla players can play in more than one position.

The Shimlas will travel with a group of 29 players, and will, after their match in the City of Gold, fly directly to Cape Town for their other two league matches.

“We will take six extra players (other than the 23-man squad) with us,” Scholtz said.

“One should select a group for this week that can fight, hang in there, and are able to play another match or two. It is like a USSA week where you need fighters.”

Prop Chase Morison, who was given a red card against the Central University of Technology in Johannesburg on 14 March 2016, wasn't sighted, and is available to play again. The Shimlas are still unbeaten after winning 10-9 against CUT in the FNB Stadium. Flyhalf Pieter-Steyn de Wet, who missed the game against CUT due to an injury, will be able to play against UJ.

The Kovsie Young Guns and Vishuis, the residence representative for the UFS, will also play a couple of matches in the coming week.

Fixtures:

Shimlas: 21 March: Shimlas v UJ (FNB Stadium); 24 March: Maties v Shimlas (Cape Town Stadium); 28 March: Puk v Shimlas (Cape Town Stadium).

Kovsie Young Guns: 19 March: Kovsie Young Guns v UJ (Rand Stadium); 24 March: Puk v Kovsie Young Guns (Rand Stadium).

Vishuis: 24 March: Vishuis tv Harlequins (NMMU, Rand Stadium); 26 March: Mopanie tv Vishuis (Tuks, (Wanderers Rugby Club); 28 March: Oppierif v Vishuis (UJ, FNB Stadium).

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept