Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

New guidelines to increase diversity in student residences at the UFS
2007-06-08

As from 2008, the University of the Free State (UFS) will implement new policy guidelines for student residences so as to increase diversity on the Main Campus of the UFS in Bloemfontein.

These new policy guidelines were approved by the Council of the UFS today (Friday 8 June 2007) after consultations with a range of stakeholders, especially students currently in residences, student leaders and student organisations, with inputs received from alumni and parents as well.

According to a statement by the Chairperson of the UFS Council, Judge Faan Hancke, and the Rector and Vice-Chancellor of the UFS, Prof. Frederick Fourie, the guidelines are based on an educational rationale with a definite educational objective.

“What the UFS seeks to do with these new policy guidelines, is to overcome the racial divides of the past and equip students in residences with the knowledge and skills to understand people from other cultures, appreciate other languages and to respect differences in religion but also economic background,” Judge Hancke and Prof. Fourie said in their statement.

“This will give students in UFS residences a distinct advantage over many other work seekers in South Africa, because the workplace today is a very diverse place with people of many backgrounds,” Judge Hancke and Prof. Fourie said in their statement.
They said the UFS wanted to establish a new model of residence life in which students will voluntarily embrace diversity and learn about diversity so as to add value to their educational experience in a residence.

In the late 1990s the UFS made the first attempt to integrate its residences which led to violent clashes between white and black students. A compromise agreement was reached based on freedom of association but this has over the years led to the current situation of largely white and largely black residences.

To support students during the implementation of the new policy guidelines, the management of the UFS will establish several mechanisms and programmes for students to empower them, to build their capacity and to facilitate a smooth transition to a new model of student life in the residences.

Judge Hancke and Prof. Fourie said the decision is another important milestone in the ongoing transformation of the UFS and in the provision of quality higher education for all UFS students, and that the decision had been taken in the best interests of the students.

“This is a very carefully managed transition to bring about a non-racial character to our student residences in line with the Constitution and the ethos of a democratic South Africa,” Judge Hancke and Prof. Fourie said.

How the new policy will work in practice

As from 2008, the new policy aims to bring about an important shift in the way first-years are placed in a residence. From 2008 first-year students are to be placed to achieve a minimum diversity level of 30% in each junior residence.

In senior residences a mix of approximately 50-50 will be the goal from 2008.
Residences will be responsible for placing 50% of first-years, which gives them the scope to increase diversity. The university’s accommodation service will place the other 50%. All these placements must occur in accordance with the educational rationale and the related diversity objective.

If a residence cannot reach the diversity objectives, the university will use the 50% of placements that it controls to achieve sufficient diversity in a particular residence.

Support mechanisms for students

According to Dr Ezekiel Moraka, Vice-Rector: Student Affairs, students in the residences will not be left on their own to deal with the issues of diversity. The management of the UFS has identified several important areas where the process may need support, especially in the early stages of implementation. Students and student leadership will be involved in the further design and finalisation of the implementation details.

These areas where support will be finalised are the following:

  • Providing properly trained and qualified personnel (such as live-in wardens, residence heads etc.) to supervise the implementation of the policy on a 24-hour basis;
  • Ongoing orientation workshops for all students in residences to deal with diversity in a mature way;
  • Support to deal with language issues, including interpreting services so that language rights of all students can be respected; and
  • Assistance with the review of residence governance, administrative and other procedures that have been used in residences up to now.

“There can therefore be no doubt that the management is committed to the well-supported and successful implementation of this new policy and to giving the best possible education to all our students,” Judge Hancke and Prof Fourie said.

Media release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
8 June 2007
 

 
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept