Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

Pursuit of excellence a strong focus for incoming UFS Vice-Chancellor
2017-02-06

Description: Official opening 2017 Tags: Official opening 2017

Prof Francis Petersen, the incoming
Vice-Chancellor and Rector of the UFS,
shared his future plans for the university
with staff during the official opening.
Photo: Johan Roux

Video clip
Photo gallery

The newly elected Chairperson of the UFS Council, Mr Willem Louw, and Prof Francis Petersen, the incoming Vice-Chancellor and Rector of the UFS, were welcomed at this year’s official opening of the academic year which took place at the Bloemfontein Campus of the University of the Free State (UFS) on 3 February 2017.  

Prof Petersen, who will start his tenure at the UFS on 1 April 2017, was introduced to staff by the Acting Rector, Prof Nicky Morgan. Prof Petersen shared his future plans for the UFS with staff.

His vision for the UFS spells excellence. Among others, he seeks to establish an academic culture of excellence, underpinned by the pillars of diversity and inclusivity. “It is important that there should be respect for different convictions,” he said.

“The UFS should be a place where everyone feels welcome; a strong sense of belonging is needed. Staff and students should feel that they would like to make a contribution to make the UFS a strong university,” he said.

In order to address the institutional climate issue, Prof Petersen suggests that attention be given to the curriculum as well as transformation of the research culture. Research outputs should be expanded and diversified. Inclusivity from a community engagement perspective is also needed. “The things we are good at and in which we excel should be the anchors impacting our academic enterprise,” he said.

In terms of the physical environment, he said that spaces should be welcoming for students. “It is important that we sit with students to get their views and listen to their concerns,” Prof Petersen said.

To promote transformation at the university, the UFS management team is busy working on an integrated transformation plan to be submitted to Council in June 2017. As part of this process, consultations will be held with staff and students in order to incorporate their perspectives and convictions in the plan as well.

“It is important that there should be
respect for different convictions.”

Furthermore, it is important for Prof Petersen that the Qwaqwa and South Campuses should be more integrated with the Bloemfontein Campus. “The UFS is one university with three locations. The fact that it is one university should be reflected in our actions, attentions, and thoughts. Although there are geographical differences, all three campuses should receive the same resources and should deliver the same quality outputs,” he said.

Prof Petersen ended his speech by returning to the importance of academic excellence. “With the Academic Project we always strive for excellence. To achieve academic excellence, the focus is on both academic and support staff. In order to reach our goal, all staff should produce work of superior quality,” he said.

“I am a good listener who is outcome driven, with a vision that includes: diversity, inclusivity, academic excellence, and innovation”, Prof Petersen concluded.  

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept