Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

Investec guest speaker exhorts South Campus students to ‘give it their all’
2017-02-16

Important Contact Details:
South Campus Services

Academic Advice
Chwaro Shuping: +27 51 505 1430
shupingcn@ufs.ac.za

CUADS (Center for Universal
Access and Disability Support)
Martie Miranda: +27 51 401 3713

Health and Wellness
Lizet Holtzhausen (staff wellness):
+27 51 401 2529
wellness@ufs.ac.za
Annelise Visagie (student wellness):
+27 51 401 3258
Health: +27 51 401 2603
HIV/AIDS Office: +27 51 401 2998
vandenbergfjj@ufs.ac.za

Protection Services
24-hour line: +27 51 505 1217

ICT Services
Quincey van der Westhuizen:
+27 51 401 7700

Video clip
Photo Gallery

The South Campus of the University of the Free State (UFS) recently welcomed new first-year and returning senior students during an event in the Madiba Arena. This year marks another highlight for the campus, with the accommodation of 252 students in a brand-new residence named Legae (meaning “Home”) on the property.

Prof Daniella Coetzee, Campus Principal, reminded the gathered students, “You are a fully-fledged Kovsie, and this is the first day of the rest of your life. You are now going to really work on your dreams.”

She went on to relate the life story of Albert Einstein, renowned physicist, making the point, “When you work, when you persist, when you take it one day at a time, you never lose sight of your dreams, and you will reach your dreams. I can promise you one thing, dear Kovsies, that if you work hard, plan hard, and you put your mind to it, it will definitely be worthwhile.”

Setlogane Manchidi, Head of Investec’s Corporate Social Investments division and guest speaker, told his colourful life story and academic journey. He described his ‘a-ha moment’ in high school, “when the penny dropped and everything started making sense” on a visit to his mother’s employer in Johannesburg, after going to the cinema to watch a movie: “This is the life I want to live.”

Description: 'South Campus Opening Tags: South Campus, Opening
Andrew Tlou, Investec Social Investment; Carol Bunn,
UFS Institutional Advancement; Setlogane Manchidi,
Head of Investec’s Corporate Social Investments division;
Tshegofatso Setilo, UAP Programmes Manager; and
Francois Marais, Director: Access Programmes,
at the South Campus opening and orientation day.
Photo: Eugene Seegers


This led to a new resolve in his scholastic efforts at the rural school back home in Ga-Phahla, Limpopo, and he started studying over weekends and by candlelight at night. Mr Manchidi shared this lesson with the students, “At that point, I lost my so-called ‘friends.’ I learnt this: Peer pressure is real. If you want to deal with peer pressure, surround yourself with the right peers! Surround yourself with people who have your best interests at heart. Surround yourself with people who will not turn you back from your path.” He later succeeded in obtaining a bursary to study at the University of Cape Town (UCT).

Mr Manchidi concluded by exhorting students to aspire to greatness, “Every time you settle for what is expected, you rob yourself of the opportunity to prove yourself out of the ordinary. Choose to exceed expectations. Give it your all!”

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept