Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2024 | Story André Damons | Photo supplied
From top (left to right): Dr Angélique Lewies (researcher from the Robert WM Frater Cardiovascular Research Centre within the UFS Department of Cardiothoracic Surgery), Zurika Murray (behavioural geneticist from the UFS Department of Genetics), Dr Marieka Gryzenhout (C-rated scientist and Senior Lecturer in the Department of Genetics), and Dr Jaco Wentzel (serves as the pharmaceutical industry partner and consultant for the project at FARMOVS).

In an effort to advance drug discovery and disease research, researchers from the University of the Free State (UFS), the Central University of Technology (CUT), and FARMOVS, a clinical research company associated with the UFS, is developing innovative 3D cell culture models using 3D printed mini bioreactors.

This interdisciplinary project, led by Dr Angélique Lewies, researcher from the Robert WM Frater Cardiovascular Research Centre (Frater Centre) within the UFS Department of Cardiothoracic Surgery, is creating more accurate and human-like models for this purpose, reducing the need for animal testing, and improving the safety and effectiveness of new treatments.

The project was initiated to address the challenges associated with current 3D cell culture techniques, which are often expensive and complex. Recognising the need for a more cost-effective and user-friendly solution, the researchers embarked on this collaboration to develop a novel 3D cell culture system. By making these advanced techniques more accessible, the team aims to enhance the reliability of drug testing and significantly reduce the reliance on animal experiments. This innovative approach not only promises to cut costs but also promotes ethical research practices in the scientific community.

Dr Lewies, whose research specialises in cardio-oncology (relationship between cancer treatment and heart health), particularly in understanding and preventing damage to cardiac cells caused by chemotherapy, leads the cell biology aspects of the project, focusing on the cultivation of 3D cancer spheroid and organoid cultures.

According to her, the project focuses on creating 3D cell cultures, known as spheroids and organoids, that mimic human tissues more closely. These 3D models can improve the reliability of drug testing and reduce the need for animal experiments, aligning with the 3R principles: Reduction, Replacement, and Refinement.

Creating a versatile platform

“Traditional drug discovery and disease studies often rely on flat (2D) cell cultures and animal models. While animal models are essential for understanding disease and testing drug safety, they don't always predict how humans will respond, and their use raises ethical concerns.

“We aim to develop affordable and efficient 3D-printed mini bioreactors for growing these advanced cell cultures. These bioreactors will be designed to fit into existing cell culture labs, making them accessible to researchers. By leveraging the cutting-edge 3D printing technology at CUT's Centre for Rapid Prototyping and Manufacturing (CRPM), the team hopes to create a versatile platform for various research applications,” says Dr Lewies.

She is joined in this project by UFS colleagues; Zurika Murray, a behavioural geneticist, and her colleague from the Department of Genetics, Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer. Dr Jaco Wentzel from FARMOVS. is also involved in the project. Dr Wentzel serves as the pharmaceutical industry partner and consultant for the project. With experience in cellular biology and pharmaceuticals, he ensures that the new 3D cell culture models meet industry standards and can be effectively used in drug development. Dr Wentzel’s role is crucial in bridging the gap between academic research and practical application in the pharmaceutical industry.

Goals

According to Dr Lewies, this project aims to create more accurate and ethical models for drug testing and improving the development of new treatments. By combining expertise from engineering, biology, and mycology, the team is set to revolutionise how diseases are studied, and medicines developed. Funded by the CUT and UFS Joint Research Programme, this initiative promises to foster innovation and lead to new research collaborations.

“Cardiac cell damage, known as cardiotoxicity, can lead to serious cardiovascular diseases and is a major reason why some drugs are removed from the market. By developing 3D cancer spheroids and cardiac organoids (mini heart models), my team aims to find ways to prevent this cardiotoxicity while enhancing the effectiveness of chemotherapy drugs.

“Additionally, they are exploring the cardiotoxic effects of natural products, such as medicinal plants and mushrooms, which show potential for both anticancer and cardio-protective properties,” says Dr Lewies.

Experts

Murray is interested in how the psychedelic compounds psilocybin and psilocin affect the brain with her research focusing on the epigenome of genes within the serotonin pathway, which could explain the therapeutic potential of these compounds. “As part of this project, Murray will work with the Frater Centre to develop neuronal organoids (mini brain models) using the 3D mini-bioreactor platform.

“This will allow her to investigate the effects of psilocybin and psilocin on brain function, which have shown promise in treating mental health disorders like depression and anxiety, aiming to understand how these substances might help treat mental health issues,” says Dr Lewies.

Dr Gryzenhout brings her expertise in mycology and is responsible for cultivating medicinal mushrooms used in the project. Dr Gryzenhout's research focuses on the genetic characterisation of medicinal mushrooms and evaluating their therapeutic potential. These mushrooms produce a variety of bioactive compounds with therapeutic benefits, including anticancer activities, heart protection, and immune system support.

Her team is also approved by the South African Health Products Regulatory Authority (SAHPRA) to research the controlled psychedelic compounds psilocybin and psilocin.

Drug Discovery Goals

The project’s long-term focus is on potentially discovering new drugs to prevent and treat heart and brain diseases. Specifically, the team is working on developing therapies for cardio-oncology and neurological applications. In the realm of cardio-oncology, the goal is to find treatments that prevent cardiac cell damage and downstream cardiovascular diseases caused by cancer therapies, while still effectively targeting cancer cells. For neurological applications, the researchers are exploring the potential of drugs derived from medicinal mushrooms, including those with psychedelic properties, to treat conditions like depression, anxiety, and other mental health disorders.

News Archive

Space-based information plays vital role in disaster-risk reduction
2017-02-28

Africa is one of the continents most affected by disasters triggered by natural hazards. The result of climate change is a reality that affects every human being, whether it is extreme heat waves, cyclones, or the devastation of drought and floods. Climate change can provoke injuries or fatalities and affects the livelihoods of people in both rural communities and urban areas. It triggers damage and losses in various sectors of development, such as housing, road infrastructure, agriculture, health, education, telecommunications, energy, and affects routine economic processes leading to economic losses.

According to Dr Dumitru Dorin Prunariu, President of the Association of Space Explorers Europe, space programmes have become an important force defining challenges of the 21st century. “Space observation is essential for climate-change monitoring,” he said.

Dr Prunariu was the keynote speaker at a two-day symposium on climate resilience and water that was hosted by the Disaster Management Training and Education Centre for Africa (DiMTEC), at the University of the Free State (UFS). He participated in the Soviet Union’s Intercosmos programme and completed an eight day-mission on board Soyuz 40 and the Salyut 6 space laboratory, where he and fellow cosmonaut Leonid Popov completed scientific experiments in the fields of astrophysics, space radiation, space technology, space medicine, and biology. He is the 103rd human being to have travelled to outer space.

The focus of Dr Prunariu’s lecture was: Space activities in support of climate change mitigation and climate resilience.

Description: Dr Dumitriu Dorin Prunariu Tags: Dr Dumitriu Dorin Prunariu

Dr Dumitru Dorin Prunariu, the 103rd human
being in outer space and President of
the Association of Space Explorers Europe.
Photo: Charl Devenish

Space-based information, an extra eye that can detect a way out during disasters
“For governments to support communities affected by any disaster, precise and up-to-date information on its impacts is essential as a way to respond in a timely and effective way,” said Dr Prunariu.

Space-based information (derived using Earth observation, global navigation satellite systems, and satellite communications) can play a vital role in supporting disaster-risk reduction, response, and recovery efforts, by providing accurate and timely information to decision-makers.

“With space-based information, disaster management teams will be able to take note of recently established roads that may not appear in typical maps produced by National Geographic Institutes, but which could be used as emergency evacuation routes or as roads to deliver humanitarian assistance to those who require it in remote areas."

Space-based tools help decision-makers to improve planning
“Space-based tools and spatial data infrastructure is also crucial for policy planners and decision-makers in increasing the resilience of human settlements. Using geographic data and information collected before the occurrence of major disasters in combination with post-disaster data could yield important ideas for improved urban planning, especially in disaster-prone areas and highly-populated regions.

“In the recovery process, information on impact is used by governments to provide assistance to those affected, to plan the reconstruction process, and to restore the livelihoods of those affected,” said Dr Prunariu.

“Space observation is
essential for climate-
change monitoring.”

The symposium was attended by representatives from Liberia, Nigeria, Kenya, Ghana, Namibia, and Zimbabwe, with various international scientists from Europe imparting their expert knowledge on water and global resilience. The presence of these international experts strengthened global networks.

It isn't important in which sea or lake you observe a slick of pollution, or in the forests of which country a fire breaks out, or on which continent a hurricane arises, you are standing guard over the whole of our Earth. - Yuri Artyukhin: Soviet Russian cosmonaut and engineer who made a single flight into space.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept