Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 July 2024 | Story Lunga Luthuli | Photo Sonja Dlamini and Nokuthula Tshabalala
Kovsie Model United Nations 2024
Delegates at the 2024 Kovsies Model United Nations Summit engage in UN simulations, fostering international understanding and innovative problem-solving at the University of the Free State.

The University of the Free State (UFS) recently hosted the third annual Kovsies Model United Nations (KMUN) Summit, attracting delegates from universities and TVET colleges across South Africa.

This year's event, themed 'Building Sustainable Bridges for the World We Want', took place from 12 to 14 July 2024 and offered students the chance to engage in United Nations (UN) simulations to develop a deeper understanding of international affairs and innovative problem-solving. These UN simulations included the General Assembly, the Economic and Social Council, the Security Council, the UN Human Rights Council, and UNESCO.

Unique African solutions

The summit's keynote address was delivered by Deputy Minister of Higher Education and Training Buti Manamela. He stressed the importance of addressing global challenges in an African context, highlighting the role of youth in achieving the Sustainable Development Goals (SDGs), and why education lies at the heart of making this possible.

Manamela noted that the African Union (AU) had declared 2024 ‘The Year of Education’, emphasising the need for resilient and education systems that equip African youth with skills and knowledge for the modern world.

"Our problems in Africa are not different from the rest of the world; however, the solutions that are required must respond to the material conditions and the historical realities of our continent," he said.

Localise development goals

Dibolelo Mance, Free State MEC for Public Works and Infrastructure, also addressed the summit, urging youth to use the SDGs as an impetus to enhance their own communities and participate in global movements.

She highlighted local initiatives aimed at empowering young people to take active roles in their communities, using the SDGs as a development framework.

Policy partnership key for change

Dr Kevin Naidoo, Deputy Director-General of Policy, Governance, and Administration in the Department of Cooperative Governance and Traditional Affairs, stressed the role of youth as policy partners in implementing the UN SDGs and the AU’s Agenda 2063. He encouraged delegates to inspire change and actively participate in policymaking processes, advocating for a more inclusive and participatory approach to governance.

The KMUN Summit gave young leaders a platform to engage in meaningful discussions and develop critical skills. The event reaffirmed the importance of youth leadership in global affairs, highlighting their crucial role in shaping a better future.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept