Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 July 2024 | Story Lunga Luthuli | Photo Sonja Dlamini and Nokuthula Tshabalala
Kovsie Model United Nations 2024
Delegates at the 2024 Kovsies Model United Nations Summit engage in UN simulations, fostering international understanding and innovative problem-solving at the University of the Free State.

The University of the Free State (UFS) recently hosted the third annual Kovsies Model United Nations (KMUN) Summit, attracting delegates from universities and TVET colleges across South Africa.

This year's event, themed 'Building Sustainable Bridges for the World We Want', took place from 12 to 14 July 2024 and offered students the chance to engage in United Nations (UN) simulations to develop a deeper understanding of international affairs and innovative problem-solving. These UN simulations included the General Assembly, the Economic and Social Council, the Security Council, the UN Human Rights Council, and UNESCO.

Unique African solutions

The summit's keynote address was delivered by Deputy Minister of Higher Education and Training Buti Manamela. He stressed the importance of addressing global challenges in an African context, highlighting the role of youth in achieving the Sustainable Development Goals (SDGs), and why education lies at the heart of making this possible.

Manamela noted that the African Union (AU) had declared 2024 ‘The Year of Education’, emphasising the need for resilient and education systems that equip African youth with skills and knowledge for the modern world.

"Our problems in Africa are not different from the rest of the world; however, the solutions that are required must respond to the material conditions and the historical realities of our continent," he said.

Localise development goals

Dibolelo Mance, Free State MEC for Public Works and Infrastructure, also addressed the summit, urging youth to use the SDGs as an impetus to enhance their own communities and participate in global movements.

She highlighted local initiatives aimed at empowering young people to take active roles in their communities, using the SDGs as a development framework.

Policy partnership key for change

Dr Kevin Naidoo, Deputy Director-General of Policy, Governance, and Administration in the Department of Cooperative Governance and Traditional Affairs, stressed the role of youth as policy partners in implementing the UN SDGs and the AU’s Agenda 2063. He encouraged delegates to inspire change and actively participate in policymaking processes, advocating for a more inclusive and participatory approach to governance.

The KMUN Summit gave young leaders a platform to engage in meaningful discussions and develop critical skills. The event reaffirmed the importance of youth leadership in global affairs, highlighting their crucial role in shaping a better future.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept