Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 July 2024 Photo Barend Nagel
Nhlanhla Simelane
Nhlanhla Simelane is a second-year Language Practice student, majoring in South African Sign Language. He is also a former Chairperson of Signals – a student association that is aimed at promoting SASL and Deaf awareness.

Opinion article by Nhlanhla Simelane, Student Assistant: South African Sign Language and Deaf Studies, Faculty: The Humanities, University of the Free State.

It has been a year since the president signed off on the amendment bill to include South African Sign Language (SASL) as one of the country’s official languages. And one may wonder, what has changed since then? After all, many individuals and organisations, including the Deaf Federation of South Africa (DeafSA), the National Institute for the Deaf (NID), and Deaf rights activists from the Deaf community, believed that official recognition of sign language would lead to significant developments for SASL and the Deaf community.

Since then, SASL has mostly benefited from exposure from the SASL Indabas that PanSALB held on 9-10 March 2023 and another one on the 1-2 February this year. These Indabas were aimed at “discussing the standardisation of SASL and mapping a way forward”. They included several stakeholders, including our very own institution. They also had an impact on the development of SASL in various institutions, including UNISA and University of Cape Town (UCT), and it is hoped that this influence will extend to other institutions.

However, one must not overlook the fact that despite being a minority language, SASL already enjoyed significant language rights. For example, the South African Schools Act recognised it as an official language in 1996. The Use of Official Languages Act of 2012 provided another benefit that was not even enjoyed by the other 11 official languages; with this act, state entities had to establish a language policy outlining the use of official languages for public communication, specifically if a member of the public chose SASL as their preferred language. It also benefited from protection under the South African Sign Language Charter, launched by the SASL NLB (National Language Board) in 2020, roughly three years before it became official. Even Prof Theodorus du Plessis, Professor Emeritus in the Department of South African Sign Language and Deaf Studies, University of the Free State (UFS), in a previous opinion article, mentioned that there would be little to gain from officially recognising SASL, aside from the added symbolism associated with such a move. As a matter of fact, SASL had more to lose than gain due to its official recognition, as you will learn later in the article.

A human rights level

On a human rights level, which is more relevant to those living with hearing impairments in the country, the officialisation of SASL still had no significant effect on any of their human rights. This is simply because these persons already enjoyed their rights. However, what the officialisation cost the Deaf community* is the privilege as mentioned earlier that the Use of Official Languages Act of 2012 provided – users of SASL having the right to choose SASL as their language of interaction with the state – the very one that official languages do not enjoy. This is thus a disadvantage to the Deaf community, considering that they already suffer from a lack of interpreters in the county. An article by Nicky Bezuidenhout early this year highlighted that there is a “lack of access to crucial services like healthcare and justice due to a shortage of qualified South African Sign Language (SASL) interpreters”. Therefore, many Deaf people rely on untrained or unqualified individuals and mostly even family members to act as interpreters. This was mostly the case in my life, being a CODA (Child of a Deaf Adult) and having to interpret for my parents. And besides my proficiency in SASL, there was still the matter of a breach of confidentiality. This is a common problem for many people. Therefore, more SASL interpreters (SASLi) are needed. Additionally, it is up to everyone to take it upon themselves to learn SASL through the various provisions that are available today.

More development for SASL as a language

Thankfully, the UFS, among a few other institutions such as the Wits University, North-West University as well as the Durban University of Technology, makes such a provision through its SASL short course. Another way to learn is through mobile applications such as DEAFinition and the NID SASL Dictionary. The previous platforms also offer inexpensive online courses. This way, one can be equipped with SASL fundamentals to at least be able to hold a conversation without the need for an interpreter. Furthermore, we can only anticipate that since SASL is officially recognised, it will become more accessible in higher education institutions, as mentioned earlier, and will be included in the South African school curriculum, particularly for mainstream schools. As a result, more people will have the opportunity to learn SASL. Moreover, we can expect to see an increase in the number of qualified teachers with not only teaching skills but also proficiency in SASL.

Nonetheless, it has only been a year and matters regarding language plans and policies often require a great amount of resources, with time being the greatest of all. We can only hope that its officialisation has indeed led to the cultural acceptance of SASL and the relevant community, promoting substantive equality, and preventing unfair discrimination based on disability. But more importantly, we hope that this is not the end of the road for SASL in terms of its development as a language.

*Footnote: It is important to make a distinction between deaf people who are deaf but do not identify as part of the Deaf community and do not use SASL (who are referred to with a lowercase “d’’), and those who are deaf and are part of the Deaf community, making use of SASL as their first language (who are referred to using a capitalised ‘D’).

• Nhlanhla Simelane is a second-year Language Practice student, majoring in South African Sign Language. He is also a former Chairperson of Signals – a student association that is aimed at promoting SASL and Deaf awareness.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept