Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2024 | Story Precious Shamase | Photo Suplied
Prof Jesse Lutabingwa
Prof Jesse Lutabingwa, the visiting scholar who will be facilitating grant-writing workshops to support third-stream aspirations.

The University of the Free State (UFS) welcomes Prof Jesse Lutabingwa, a visiting Fellow from the Appalachian State University (AppState) in the United States. Prof Lutabingwa arrives under the prestigious Carnegie African Diaspora Fellowship Programme (CADFP), bringing a wealth of experience to support the university's ‘third-income aspirations.’

Prof Lutabingwa’s long-standing connection with the UFS began in 2009 when he played a pivotal role in establishing a collaborative partnership between the two institutions. At the time, he was serving as Associate Vice-Chancellor for International Education and Development at AppState. Now, he returns not as an administrator, but as a faculty member eager to share his expertise and deepen this valuable connection.

"I have always wanted to participate in CADFP to give back to the African continent," Prof Lutabingwa explains. "This fellowship allows me to engage with the UFS community on different issues and contribute to the professional and individual growth of faculty, staff, and students, ultimately serving our communities better."

Empowering through grant writing

A key aspect of Prof Lutabingwa’s fellowship is a series of grant-writing workshops designed to empower UFS faculty, researchers, and postgraduate students, particularly on the Qwaqwa Campus.

"Many find the idea of proposing research grants daunting," Prof Lutabingwa says. "My goal is to elucidate the process. With more than 33 years of experience and more than 65% success rate, I am here to share the knowledge I have gained as a grant writer and reviewer."

These workshops will equip participants with the skills and strategies needed to craft compelling proposals, significantly increasing their chances of securing funding. Access to grants is crucial, Prof Lutabingwa emphasises, as it allows researchers to pursue innovative work that benefits society while offering valuable training opportunities for students.

Collaboration for research impact

Prof Lutabingwa’s contributions extend beyond workshops. He will collaborate with Dr Grey Magaiza, Director of the Centre for Gender and Africa Studies, and other faculty members on co-authoring two research articles. This collaboration aims to strengthen the UFS' research profile and contribute to a more impactful research landscape.

Dr Magaiza highlights the significance of Prof Lutabingwa’s visit: "Jesse is at the heart of the UFS-AppState partnership. Now, as a Carnegie Africa Diaspora fellow, he can engage with us in a new way, pouring his expertise back into this space. His grant-writing workshops and collaborative research efforts will be instrumental in achieving our third-stream aspirations."

Excited about the future

The fellow’s enthusiasm for this fellowship is noticeable when he speaks and engages with colleagues on campus. "Words cannot express my excitement," he shares. "I am grateful for this opportunity to collaborate, engage in research, and connect with various individuals on campus."

The UFS community warmly welcomes Prof Lutabingwa and anticipates a fruitful fellowship that will empower faculty, strengthen research, and propel the UFS – particularly the Qwaqwa Campus – towards achieving its third-income aspirations.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept