Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 June 2024 | Story Jacky Tshokwe | Photo Suplied
Dr Mutshidzi Mulondo
Dr Mutshidzi Mulondo’s achievements not only highlight her personal dedication and growth, but further reflect the University of the Free State’s unwavering commitment to Vision 130’s goals of academic excellence, leadership, and global engagement.

The University of the Free State (UFS) takes immense pride in the remarkable achievements of Dr Mutshidzi Mulondo, an academic in the Faculty of Health Sciences. Her international recognition and appointments not only exemplify her dedication to academic excellence and leadership but also reflect the UFS’ commitment to nurturing researchers who are globally competitive and internationally well connected, aligning perfectly with Vision 130.

Dr Mulondo was recently appointed to the International Council of Advisers as council member in the Golden Key International Honour Society. Golden Key, the world's largest collegiate honour society, selects the top 15% of high academic achievers in a college or university. In this role, Dr Mulondo will represent South Africa and oversee more than 20 (all) academic institutional chapters in South Africa. Her passion for academic excellence and leadership development is evident, as she strives to nurture these qualities among students, further ensuring that they remain socially engaged, in the spirit of ubuntu. “Education is one of the keys to eradicating poverty. While academic excellence can set graduates apart, we must continue to encourage and celebrate this excellence among our students and youth – not just this Youth Month but every other month. I am honoured to amplify an organisation such as Golden Key that shares these values,” says Dr Mulondo.

This commitment to academic and leadership excellence is a cornerstone of the UFS’ mission. The strategic objectives aim to enhance research capabilities and promote leadership, creating an environment where students and staff can thrive and make significant contributions to society.

Dr Mulondo’s recent accomplishments extend beyond her council and advisory role. She was awarded an impact-oriented grant for emerging researchers under the University Partnership Initiative, allowing her to strengthen her collaborative research partnership with the Appalachian State University (AppState). As a Public Health visiting scholar at AppState’s Beaver College of Health Sciences, she worked with academic host Dr Tandrea Carter, and collaborators Prof Martie Thompson and Prof Adam Hege. Her visit in the last term of 2023 culminated in a presentation of preliminary findings at the Global Symposium, USA. This public health partnership highlights the continuing collaboration initiated during her time as a Mandela Washington Fellow in 2022. This partnership underscores the UFS’ commitment to global engagement and fostering partnerships that enhance educational and research agenda.

Her global impact is further recognised, as she was selected globally as one of 10 Reimagining Healthcare Scholars by Novartis in 2023. Representing South Africa, she joined young global scholars at the One Young World Summit in the United Kingdom. The summit gathered delegates from 192 countries to address pressing global issues such as mental health, climate change, and food security. “As emerging scholars, it is essential to stay engaged locally and globally if we must remain innovative,” says Dr Mulondo, who is now a One Young World Ambassador. Her participation underscores the UFS’ dedication to nurturing staff members who address global challenges and aligns with the vision of fostering academic excellence and social responsibility.

“It is no surprise that Dr Mulondo has been appointed and selected for these various global roles and accolades, as she has continued to display the UFS Vision 130’s values of academic and leadership excellence on a global stage, further evidenced by her selection to the university’s Emerging Scholar Accelerator Programme (ESAP),” says Prof Joyce Tsoka-Gwegweni, Vice-Dean: Research and Head of Public Health. This advanced residential programme identifies the most promising academics who have obtained a doctoral degree within the last five years. Dr Mulondo’s dedication to academic excellence and leadership is commendable.

Reflecting on her journey as an emerging researcher in the newly established Division of Public Health, Dr Mulondo expressed gratitude for the supportive environment at the UFS. “I am grateful for the enabling environment that the UFS provides to emerging researchers and academics through programmes such as ESAP. I look forward to continued growth and I continue to be fuelled by my favourite passages of Scripture. ‘Let no one despise your youth, but be an example to the believers in word, in conduct, in love, in spirit, in faith and in purity.’ For the people who know their God will truly be strong and will carry out great exploits.” (1 Timothy 4:12; Daniel 11:32).

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept