Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 June 2024 | Story Jacky Tshokwe | Photo Suplied
Dr Mutshidzi Mulondo
Dr Mutshidzi Mulondo’s achievements not only highlight her personal dedication and growth, but further reflect the University of the Free State’s unwavering commitment to Vision 130’s goals of academic excellence, leadership, and global engagement.

The University of the Free State (UFS) takes immense pride in the remarkable achievements of Dr Mutshidzi Mulondo, an academic in the Faculty of Health Sciences. Her international recognition and appointments not only exemplify her dedication to academic excellence and leadership but also reflect the UFS’ commitment to nurturing researchers who are globally competitive and internationally well connected, aligning perfectly with Vision 130.

Dr Mulondo was recently appointed to the International Council of Advisers as council member in the Golden Key International Honour Society. Golden Key, the world's largest collegiate honour society, selects the top 15% of high academic achievers in a college or university. In this role, Dr Mulondo will represent South Africa and oversee more than 20 (all) academic institutional chapters in South Africa. Her passion for academic excellence and leadership development is evident, as she strives to nurture these qualities among students, further ensuring that they remain socially engaged, in the spirit of ubuntu. “Education is one of the keys to eradicating poverty. While academic excellence can set graduates apart, we must continue to encourage and celebrate this excellence among our students and youth – not just this Youth Month but every other month. I am honoured to amplify an organisation such as Golden Key that shares these values,” says Dr Mulondo.

This commitment to academic and leadership excellence is a cornerstone of the UFS’ mission. The strategic objectives aim to enhance research capabilities and promote leadership, creating an environment where students and staff can thrive and make significant contributions to society.

Dr Mulondo’s recent accomplishments extend beyond her council and advisory role. She was awarded an impact-oriented grant for emerging researchers under the University Partnership Initiative, allowing her to strengthen her collaborative research partnership with the Appalachian State University (AppState). As a Public Health visiting scholar at AppState’s Beaver College of Health Sciences, she worked with academic host Dr Tandrea Carter, and collaborators Prof Martie Thompson and Prof Adam Hege. Her visit in the last term of 2023 culminated in a presentation of preliminary findings at the Global Symposium, USA. This public health partnership highlights the continuing collaboration initiated during her time as a Mandela Washington Fellow in 2022. This partnership underscores the UFS’ commitment to global engagement and fostering partnerships that enhance educational and research agenda.

Her global impact is further recognised, as she was selected globally as one of 10 Reimagining Healthcare Scholars by Novartis in 2023. Representing South Africa, she joined young global scholars at the One Young World Summit in the United Kingdom. The summit gathered delegates from 192 countries to address pressing global issues such as mental health, climate change, and food security. “As emerging scholars, it is essential to stay engaged locally and globally if we must remain innovative,” says Dr Mulondo, who is now a One Young World Ambassador. Her participation underscores the UFS’ dedication to nurturing staff members who address global challenges and aligns with the vision of fostering academic excellence and social responsibility.

“It is no surprise that Dr Mulondo has been appointed and selected for these various global roles and accolades, as she has continued to display the UFS Vision 130’s values of academic and leadership excellence on a global stage, further evidenced by her selection to the university’s Emerging Scholar Accelerator Programme (ESAP),” says Prof Joyce Tsoka-Gwegweni, Vice-Dean: Research and Head of Public Health. This advanced residential programme identifies the most promising academics who have obtained a doctoral degree within the last five years. Dr Mulondo’s dedication to academic excellence and leadership is commendable.

Reflecting on her journey as an emerging researcher in the newly established Division of Public Health, Dr Mulondo expressed gratitude for the supportive environment at the UFS. “I am grateful for the enabling environment that the UFS provides to emerging researchers and academics through programmes such as ESAP. I look forward to continued growth and I continue to be fuelled by my favourite passages of Scripture. ‘Let no one despise your youth, but be an example to the believers in word, in conduct, in love, in spirit, in faith and in purity.’ For the people who know their God will truly be strong and will carry out great exploits.” (1 Timothy 4:12; Daniel 11:32).

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept