Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 June 2024 | Story Jacky Tshokwe | Photo Suplied
Dr Mutshidzi Mulondo
Dr Mutshidzi Mulondo’s achievements not only highlight her personal dedication and growth, but further reflect the University of the Free State’s unwavering commitment to Vision 130’s goals of academic excellence, leadership, and global engagement.

The University of the Free State (UFS) takes immense pride in the remarkable achievements of Dr Mutshidzi Mulondo, an academic in the Faculty of Health Sciences. Her international recognition and appointments not only exemplify her dedication to academic excellence and leadership but also reflect the UFS’ commitment to nurturing researchers who are globally competitive and internationally well connected, aligning perfectly with Vision 130.

Dr Mulondo was recently appointed to the International Council of Advisers as council member in the Golden Key International Honour Society. Golden Key, the world's largest collegiate honour society, selects the top 15% of high academic achievers in a college or university. In this role, Dr Mulondo will represent South Africa and oversee more than 20 (all) academic institutional chapters in South Africa. Her passion for academic excellence and leadership development is evident, as she strives to nurture these qualities among students, further ensuring that they remain socially engaged, in the spirit of ubuntu. “Education is one of the keys to eradicating poverty. While academic excellence can set graduates apart, we must continue to encourage and celebrate this excellence among our students and youth – not just this Youth Month but every other month. I am honoured to amplify an organisation such as Golden Key that shares these values,” says Dr Mulondo.

This commitment to academic and leadership excellence is a cornerstone of the UFS’ mission. The strategic objectives aim to enhance research capabilities and promote leadership, creating an environment where students and staff can thrive and make significant contributions to society.

Dr Mulondo’s recent accomplishments extend beyond her council and advisory role. She was awarded an impact-oriented grant for emerging researchers under the University Partnership Initiative, allowing her to strengthen her collaborative research partnership with the Appalachian State University (AppState). As a Public Health visiting scholar at AppState’s Beaver College of Health Sciences, she worked with academic host Dr Tandrea Carter, and collaborators Prof Martie Thompson and Prof Adam Hege. Her visit in the last term of 2023 culminated in a presentation of preliminary findings at the Global Symposium, USA. This public health partnership highlights the continuing collaboration initiated during her time as a Mandela Washington Fellow in 2022. This partnership underscores the UFS’ commitment to global engagement and fostering partnerships that enhance educational and research agenda.

Her global impact is further recognised, as she was selected globally as one of 10 Reimagining Healthcare Scholars by Novartis in 2023. Representing South Africa, she joined young global scholars at the One Young World Summit in the United Kingdom. The summit gathered delegates from 192 countries to address pressing global issues such as mental health, climate change, and food security. “As emerging scholars, it is essential to stay engaged locally and globally if we must remain innovative,” says Dr Mulondo, who is now a One Young World Ambassador. Her participation underscores the UFS’ dedication to nurturing staff members who address global challenges and aligns with the vision of fostering academic excellence and social responsibility.

“It is no surprise that Dr Mulondo has been appointed and selected for these various global roles and accolades, as she has continued to display the UFS Vision 130’s values of academic and leadership excellence on a global stage, further evidenced by her selection to the university’s Emerging Scholar Accelerator Programme (ESAP),” says Prof Joyce Tsoka-Gwegweni, Vice-Dean: Research and Head of Public Health. This advanced residential programme identifies the most promising academics who have obtained a doctoral degree within the last five years. Dr Mulondo’s dedication to academic excellence and leadership is commendable.

Reflecting on her journey as an emerging researcher in the newly established Division of Public Health, Dr Mulondo expressed gratitude for the supportive environment at the UFS. “I am grateful for the enabling environment that the UFS provides to emerging researchers and academics through programmes such as ESAP. I look forward to continued growth and I continue to be fuelled by my favourite passages of Scripture. ‘Let no one despise your youth, but be an example to the believers in word, in conduct, in love, in spirit, in faith and in purity.’ For the people who know their God will truly be strong and will carry out great exploits.” (1 Timothy 4:12; Daniel 11:32).

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept