Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 June 2024 | Story André Damons | Photo Suplied
SADoCoL
Betsie Human and Elandré Williams, analysts at the South African Doping Control Laboratory (SADoCoL) at the University of the Free State (UFS), will be involved in sample preparation, analysis and data processing at the upcoming Olympic and Paralympic Games in Paris, France.

Two staff members from the South African Doping Control Laboratory (SADoCoL) which is housed at the University of the Free State (UFS), have been selected to work at the upcoming Olympic and Paralympic Games, in Paris, France.

Elandré Williams and Betsie Human will support the Paris laboratory during both games. The Olympic Games will take place from 26 July to 11 August 2024 and the Paralympic Games from 28 August to 8 September 2024.

Williams will be involved in steroid profile analysis, which includes sample preparation, analysis and data processing by Gas Chromatography (GC) and Isotope Ratio Mass Spectrometry (GC-C-IRMS).

Part of the fight against doping 

“I am excited, optimistic and privileged to have been given this opportunity, but I have to say that I am also quite nervous as this is most probably the biggest sporting event of the year. Being a part of the fight against doping in sport remains a great responsibility as what we do directly impacts the athletes,” says Williams.

She says is looking forward to the entire experience, from doing what she loves on an international level, meeting other analysts in the field and being part of the fight against doping in sport on an Olympic level.

This is her first big international sporting event.

“I am also looking forward to learning from other experts in the field who have more experience and to witness the procedures and the manner in which the laboratory operates at this time where the sample numbers are extremely high with the added pressure to finalise results in short turn-around times. This is a great opportunity for growth, both individually and in my field of expertise, in the scientific and the doping control field.

“It will definitely be an advantage for me as an analyst to get exposure to how the entire analytical procedure is executed in another laboratory, as well as insight into possible new techniques and advancements that I will be able to apply back at SADoCoL. I also think this is a great way to improve my ideas, perspectives and level of expertise as I will be working and witnessing other scientific experts in the doping control field.”

Managing workflow and logistics at the Games

Human, who was an analyst at the 2010 Soccer World Cup in South Africa, says she is both nervous and excited for this experience. 

“I was a junior analyst at SADoCoL during the 2010 Soccer World Cup, but you cannot compare a single-sport discipline with a multisport discipline like the Olympic Games – The Games will be exponentially bigger.

“In the past 14 years doping control as a whole has grown significantly. New technologies, updated requirements, more sensitive testing methods have emerged – this will be a new experience,” says Human.

She will also be involved with sample preparation/analysis/data processing and says she is looking forward to seeing how the work-flow and logistics associated with the Games (massive amounts of samples/tight deadlines etc) is managed in a high through-put laboratory.

“I am of course also looking forward to meeting analysts from other labs – we are a bit secluded here at the southern tip of Africa. Collaboration between labs is tricky when your closest neighbour is in Europe.

“It is always eye-opening to see how other labs manage similar situations (even though an Olympics is quite different from normal routine days) – exposure to new techniques and alternative thinking has a way of elevating your own thought processes and it promotes growth – both as an individual and as a doping control analyst.”

Immensely proud

Hanno du Preez, Director of SADoCoL, says the laboratory personnel are immensely proud that two of their staff members were chosen to participate in this international event, which for many scientists is the peak of their career. Similarly, this provides acknowledgement to the staff members for the area in which they have been working.

“It is only a select few who are requested to provide service at the Olympic Games. The work conducted in an Olympic laboratory provides experience which cannot be gained elsewhere. The workload and fast-paced analysis is something which the personnel are used to, but the Olympics will bring a different dimension to the processes. 

“We are excited to see what Betsie and Elandré bring back, with regards to new viewpoints on processes which are similar in all anti-doping laboratories. Individual experiences uplift everyone in a regulated business unit such as SADoCoL and also ensures improved relationships between laboratories, as other anti-doping laboratories will be represented at the Games as well. We wish them all the best for the experience, and we thank them for being dedicated ambassadors for SADoCoL and the UFS.”

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept