Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 June 2024 | Story André Damons | Photo Suplied
SADoCoL
Betsie Human and Elandré Williams, analysts at the South African Doping Control Laboratory (SADoCoL) at the University of the Free State (UFS), will be involved in sample preparation, analysis and data processing at the upcoming Olympic and Paralympic Games in Paris, France.

Two staff members from the South African Doping Control Laboratory (SADoCoL) which is housed at the University of the Free State (UFS), have been selected to work at the upcoming Olympic and Paralympic Games, in Paris, France.

Elandré Williams and Betsie Human will support the Paris laboratory during both games. The Olympic Games will take place from 26 July to 11 August 2024 and the Paralympic Games from 28 August to 8 September 2024.

Williams will be involved in steroid profile analysis, which includes sample preparation, analysis and data processing by Gas Chromatography (GC) and Isotope Ratio Mass Spectrometry (GC-C-IRMS).

Part of the fight against doping 

“I am excited, optimistic and privileged to have been given this opportunity, but I have to say that I am also quite nervous as this is most probably the biggest sporting event of the year. Being a part of the fight against doping in sport remains a great responsibility as what we do directly impacts the athletes,” says Williams.

She says is looking forward to the entire experience, from doing what she loves on an international level, meeting other analysts in the field and being part of the fight against doping in sport on an Olympic level.

This is her first big international sporting event.

“I am also looking forward to learning from other experts in the field who have more experience and to witness the procedures and the manner in which the laboratory operates at this time where the sample numbers are extremely high with the added pressure to finalise results in short turn-around times. This is a great opportunity for growth, both individually and in my field of expertise, in the scientific and the doping control field.

“It will definitely be an advantage for me as an analyst to get exposure to how the entire analytical procedure is executed in another laboratory, as well as insight into possible new techniques and advancements that I will be able to apply back at SADoCoL. I also think this is a great way to improve my ideas, perspectives and level of expertise as I will be working and witnessing other scientific experts in the doping control field.”

Managing workflow and logistics at the Games

Human, who was an analyst at the 2010 Soccer World Cup in South Africa, says she is both nervous and excited for this experience. 

“I was a junior analyst at SADoCoL during the 2010 Soccer World Cup, but you cannot compare a single-sport discipline with a multisport discipline like the Olympic Games – The Games will be exponentially bigger.

“In the past 14 years doping control as a whole has grown significantly. New technologies, updated requirements, more sensitive testing methods have emerged – this will be a new experience,” says Human.

She will also be involved with sample preparation/analysis/data processing and says she is looking forward to seeing how the work-flow and logistics associated with the Games (massive amounts of samples/tight deadlines etc) is managed in a high through-put laboratory.

“I am of course also looking forward to meeting analysts from other labs – we are a bit secluded here at the southern tip of Africa. Collaboration between labs is tricky when your closest neighbour is in Europe.

“It is always eye-opening to see how other labs manage similar situations (even though an Olympics is quite different from normal routine days) – exposure to new techniques and alternative thinking has a way of elevating your own thought processes and it promotes growth – both as an individual and as a doping control analyst.”

Immensely proud

Hanno du Preez, Director of SADoCoL, says the laboratory personnel are immensely proud that two of their staff members were chosen to participate in this international event, which for many scientists is the peak of their career. Similarly, this provides acknowledgement to the staff members for the area in which they have been working.

“It is only a select few who are requested to provide service at the Olympic Games. The work conducted in an Olympic laboratory provides experience which cannot be gained elsewhere. The workload and fast-paced analysis is something which the personnel are used to, but the Olympics will bring a different dimension to the processes. 

“We are excited to see what Betsie and Elandré bring back, with regards to new viewpoints on processes which are similar in all anti-doping laboratories. Individual experiences uplift everyone in a regulated business unit such as SADoCoL and also ensures improved relationships between laboratories, as other anti-doping laboratories will be represented at the Games as well. We wish them all the best for the experience, and we thank them for being dedicated ambassadors for SADoCoL and the UFS.”

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept