Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 June 2024 | Story André Damons | Photo Suplied
SADoCoL
Betsie Human and Elandré Williams, analysts at the South African Doping Control Laboratory (SADoCoL) at the University of the Free State (UFS), will be involved in sample preparation, analysis and data processing at the upcoming Olympic and Paralympic Games in Paris, France.

Two staff members from the South African Doping Control Laboratory (SADoCoL) which is housed at the University of the Free State (UFS), have been selected to work at the upcoming Olympic and Paralympic Games, in Paris, France.

Elandré Williams and Betsie Human will support the Paris laboratory during both games. The Olympic Games will take place from 26 July to 11 August 2024 and the Paralympic Games from 28 August to 8 September 2024.

Williams will be involved in steroid profile analysis, which includes sample preparation, analysis and data processing by Gas Chromatography (GC) and Isotope Ratio Mass Spectrometry (GC-C-IRMS).

Part of the fight against doping 

“I am excited, optimistic and privileged to have been given this opportunity, but I have to say that I am also quite nervous as this is most probably the biggest sporting event of the year. Being a part of the fight against doping in sport remains a great responsibility as what we do directly impacts the athletes,” says Williams.

She says is looking forward to the entire experience, from doing what she loves on an international level, meeting other analysts in the field and being part of the fight against doping in sport on an Olympic level.

This is her first big international sporting event.

“I am also looking forward to learning from other experts in the field who have more experience and to witness the procedures and the manner in which the laboratory operates at this time where the sample numbers are extremely high with the added pressure to finalise results in short turn-around times. This is a great opportunity for growth, both individually and in my field of expertise, in the scientific and the doping control field.

“It will definitely be an advantage for me as an analyst to get exposure to how the entire analytical procedure is executed in another laboratory, as well as insight into possible new techniques and advancements that I will be able to apply back at SADoCoL. I also think this is a great way to improve my ideas, perspectives and level of expertise as I will be working and witnessing other scientific experts in the doping control field.”

Managing workflow and logistics at the Games

Human, who was an analyst at the 2010 Soccer World Cup in South Africa, says she is both nervous and excited for this experience. 

“I was a junior analyst at SADoCoL during the 2010 Soccer World Cup, but you cannot compare a single-sport discipline with a multisport discipline like the Olympic Games – The Games will be exponentially bigger.

“In the past 14 years doping control as a whole has grown significantly. New technologies, updated requirements, more sensitive testing methods have emerged – this will be a new experience,” says Human.

She will also be involved with sample preparation/analysis/data processing and says she is looking forward to seeing how the work-flow and logistics associated with the Games (massive amounts of samples/tight deadlines etc) is managed in a high through-put laboratory.

“I am of course also looking forward to meeting analysts from other labs – we are a bit secluded here at the southern tip of Africa. Collaboration between labs is tricky when your closest neighbour is in Europe.

“It is always eye-opening to see how other labs manage similar situations (even though an Olympics is quite different from normal routine days) – exposure to new techniques and alternative thinking has a way of elevating your own thought processes and it promotes growth – both as an individual and as a doping control analyst.”

Immensely proud

Hanno du Preez, Director of SADoCoL, says the laboratory personnel are immensely proud that two of their staff members were chosen to participate in this international event, which for many scientists is the peak of their career. Similarly, this provides acknowledgement to the staff members for the area in which they have been working.

“It is only a select few who are requested to provide service at the Olympic Games. The work conducted in an Olympic laboratory provides experience which cannot be gained elsewhere. The workload and fast-paced analysis is something which the personnel are used to, but the Olympics will bring a different dimension to the processes. 

“We are excited to see what Betsie and Elandré bring back, with regards to new viewpoints on processes which are similar in all anti-doping laboratories. Individual experiences uplift everyone in a regulated business unit such as SADoCoL and also ensures improved relationships between laboratories, as other anti-doping laboratories will be represented at the Games as well. We wish them all the best for the experience, and we thank them for being dedicated ambassadors for SADoCoL and the UFS.”

News Archive

Research helps farmers save with irrigation
2017-02-15

Description: Irrigation research Tags: Irrigation research

Marcill Venter, lecturer in the Department of
Agricultural Economics at the University of the
Free State, has developed the mathematical
programming system, Soil Water Irrigation
Planning and Energy Management in order to
determine irrigation pump hours.
Photo: Rulanzen Martin

Her advice to farmers is that they should make sure they are aware of the total cost (investment and operating costs) of an irrigation system. In most cases the investment cost is low, but the operating cost over the lifetime of the system is high.

“It is very important to have a look at the total cost and to install the most economic system,” says Marcill Venter, lecturer at the University of the Free State (UFS), who has done research on the economic sustainability of water-pipe systems.

Irrigation systems important components for farming
This research comes at a time when many farmers are relying on their irrigation systems due to persistent drought and low rainfall during 2016. South Africa has also experienced an abnormal increase in electricity tariffs in recent years. Due to tariff increases which threaten the future profitability of irrigation producers, the Water Research Commission (WRC) has launched and financed a project on the sustainable management of irrigation farming systems. “I had the opportunity to work on the project as a researcher,” says Venter.

The heart of every irrigation system is the water pipes that bring life to crops and livestock, and this is what Venter’s research is about. “Water pipes are part of the whole design of irrigation systems. The design of the system impact certain factors which determine the investment and operating costs,” she says.

Mathematical system to help farmers
Venter and Professor Bennie Grové, also from the Department of Agricultural Economics at the UFS, designed the Soil Water Irrigation Planning and Energy Management (SWIP-E) programming model as part of the WRC’s project, as well as for her master’s degree. “The model determines irrigation pump hours through a daily groundwater budget, while also taking into account the time-of-use electricity tariff structure and change in kilowatt requirements arising from the main-line design,” says Venter. The model is a non-linear programming model programmed in General Algebraic Modeling System (GAMS).

Design of irrigation system important for sustainability

The main outcome of the study is that the time-of-use electricity tariff structure (Ruraflex) is always more profitable than the flat-rate structure (Landrate). The interaction between the management and design of a system is crucial, as it determines the investment and operating costs. Irrigation designers should take the investment and operating cost of a system into account during the design process. The standards set by the South African Irrigation Institute (SAII) should also be controlled and revised.

Water-pipe thickness plays major role in cost cuts
There is interaction between water-pipe thickness, investment and operating costs. When thinner water pipes are installed, it increases the friction in the system as well as the kilowatt usage. A high kilowatt increases the operating cost, but the use of thinner water pipes lowers the investment cost. Thicker water pipes therefore lower the friction and the kilowatt requirements, which leads to lower operating costs, but thicker pipes have a higher investment cost. “It is thus crucial to look at the total cost (operating and investment cost) when investing in a new system. Farmers should invest in the system with the lowest total cost,” says Venter.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept