Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 June 2024 | Story Leonie Bolleurs | Photo Kaleidoscope Studios
Prof Hendrik Swart
Prof Hendrik Swart’s prolific publication record, the high impact of his work, and the outstanding quality of his scholarly contributions have placed him among the top 0,05% of all scholars worldwide.

ScholarGPS awarded Prof Hendrik Swart, Senior Professor in the Department of Physics at the University of the Free State (UFS), Highly Ranked Scholar status.

ScholarGPS celebrates Highly Ranked Scholars™ for their performance in various fields, disciplines, and specialties. Prof Swart’s prolific publication record, the high impact of his work, and the outstanding quality of his scholarly contributions have placed him among the top 0,05% of all scholars worldwide.

Prof Swart received Highly Ranked Scholar status (Lifetime) for ranking 16th in the discipline of Phosphor. Highly Ranked Scholars™ – Lifetime refers to distinguished authors, including those who are currently active, retired, or deceased. These scholars are recognised for their exceptional lifetime scholarly contributions, placing them in the top 0,05% of all scholars. Their achievements are evaluated across four categories: overall (across all fields), within their specific field of study, within their particular discipline, and across all specialties they are associated with.

Additionally, Prof Swart received Highly Ranked Scholar status (prior five years) for ranking first in Condensed Matter Physics, 42nd in Physics, 155th in Sensor, 207th in Physical Science and Mathematics, and 969th in all fields.

Scientific profile and credibility

ScholarGPS is a California-based company that applies artificial intelligence, data mining, machine learning, and other data science techniques to its massive database of more than 200 million publications and 3 billion citations to rank more than 30 million scholars and 55 000 institutions worldwide. They categorise more than 200 million scholarly publications into specific academic specialties. These specialties are further organised into 177 disciplines and 14 overarching fields. As a result of this extensive classification effort, scholars who are considered highly ranked within their respective fields can now be identified with greater precision. This identification is done not only within each academic specialty, but also across disciplines and fields, providing a comprehensive view of scholarly achievement and expertise. This system allows for the identification of top scholars within various areas of academic research in a way that was not possible before.

Prof Swart, who is an NRF B1-rated researcher, currently also holds the SARChI Research Chair: Solid-state Luminescent and Advanced Materials (2023-2027). On receiving this award from ScholarGPS, he says it is always a privilege to be recognised as one of the top scholars in your specific field, especially at this late stage of his career.

Professionally, Prof Swart says this award may boost his scientific profile and credibility in the academic community, potentially leading to more collaborations and partnerships.

In the field of condensed matter physics, the impact of his work is specifically noteworthy in the study of defects and impurities within semiconductors, along with their practical applications in optoelectronic devices. Moreover, his significant contributions extend to understanding optical and electronic properties at the nanoscale, bearing implications for the development of semiconductor technology, including light-emitting diodes (LEDs), photovoltaic cells, and quantum dots.

Primarily focused on mentorship

He believes his successes in physics and advances in understanding the universe are the result of a combination of variables, including innovative research, collaboration and networking, mentorship, effective communication, persistence, and resilience. “I am primarily focused on mentorship, which is critical to developing the next generation of physicists and creating a supportive environment for learning and discovery, as well as conducting groundbreaking research and making novel discoveries that are critical to pushing the boundaries of physics. I am always searching for opportunities to collaborate with other scholars, both inside and outside my discipline, which will result in constructive exchange of ideas, interdisciplinary discoveries, and collective problem solving.”

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept